Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ tests] remove some flash attention class tests #35817

Merged
merged 2 commits into from
Jan 23, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 0 additions & 31 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -4628,43 +4628,12 @@ def test_flash_attn_2_from_config(self):
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

fa2_correctly_converted = False

for _, module in fa2_model.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break

fa2_correctly_converted = (
fa2_correctly_converted
if not model_class._supports_flex_attn
else fa2_model.config._attn_implementation == "flash_attention_2"
)
self.assertTrue(fa2_correctly_converted)

_ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

with tempfile.TemporaryDirectory() as tmpdirname:
fa2_model.save_pretrained(tmpdirname)

model_from_pretrained = model_class.from_pretrained(tmpdirname)

self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")

fa2_correctly_converted = False

for _, module in model_from_pretrained.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break

fa2_correctly_converted = (
fa2_correctly_converted
if not model_class._supports_flex_attn
else model_from_pretrained.config._attn_implementation == "flash_attention_2"
)
self.assertFalse(fa2_correctly_converted)

def _get_custom_4d_mask_test_data(self):
# Sequence in which all but the last token is the same
input_ids = torch.tensor(
Expand Down
Loading