Parse PDF documents into beautifully formatted markdown content using state-of-the-art Vision Language Models - all with just a few lines of code!
Getting Started β’ Usage β’ Supported Models β’ Parameters β’ Benchmarks
Vision Parse harnesses the power of Vision Language Models to revolutionize document processing:
- π Scanned Document Processing: Intelligently identifies and extracts text, tables, and LaTeX equations from scanned documents into markdown-formatted content with high precision
- π¨ Advanced Content Formatting: Preserves LaTeX equations, hyperlinks, images, and document hierarchy for markdown-formatted content
- π€ Multi-LLM Support: Seamlessly integrates with multiple Vision LLM providers such as OpenAI, Gemini, and Llama for optimal accuracy and speed
- π Local Model Hosting: Supports local model hosting with Ollama for secure, no-cost, private, and offline document processing
- π Python >= 3.9
- π₯οΈ Ollama (if you want to use local models)
- π€ API Key for OpenAI or Google Gemini (if you want to use OpenAI or Google Gemini)
Install the core package using pip (Recommended):
pip install vision-parse
Install the additional dependencies for OpenAI or Gemini:
# To install all the additional dependencies
pip install 'vision-parse[all]'
Install the package from source:
pip install 'git+https://github.com/iamarunbrahma/vision-parse.git#egg=vision-parse[all]'
See docs/ollama_setup.md on how to setup Ollama locally.
See docs/docker_setup.md on how to setup Vision Parse with Docker.
from vision_parse import VisionParser
# Initialize parser
parser = VisionParser(
model_name="llama3.2-vision:11b", # For local models, you don't need to provide the api key
temperature=0.4,
top_p=0.5,
image_mode="url", # Image mode can be "url", "base64" or None
detailed_extraction=False, # Set to True for more detailed extraction
enable_concurrency=False, # Set to True for parallel processing
)
# Convert PDF to markdown
pdf_path = "input_document.pdf" # local path to your pdf file
markdown_pages = parser.convert_pdf(pdf_path)
# Process results
for i, page_content in enumerate(markdown_pages):
print(f"\n--- Page {i+1} ---\n{page_content}")
from vision_parse import VisionParser
custom_prompt = """
Strictly preserve markdown formatting during text extraction from scanned document.
"""
# Initialize parser with Ollama configuration
parser = VisionParser(
model_name="llama3.2-vision:11b",
temperature=0.7,
top_p=0.6,
num_ctx=4096,
image_mode="base64",
custom_prompt=custom_prompt,
detailed_extraction=True,
ollama_config={
"OLLAMA_NUM_PARALLEL": 8,
"OLLAMA_REQUEST_TIMEOUT": 240,
},
enable_concurrency=True,
)
# Convert PDF to markdown
pdf_path = "input_document.pdf" # local path to your pdf file
markdown_pages = parser.convert_pdf(pdf_path)
Note: Please refer to docs/faq.md for more details on how to improve the performance of locally hosted vision models.
from vision_parse import VisionParser
# Initialize parser with OpenAI model
parser = VisionParser(
model_name="gpt-4o",
api_key="your-openai-api-key", # Get the OpenAI API key from https://platform.openai.com/api-keys
temperature=0.7,
top_p=0.4,
image_mode="url",
detailed_extraction=True, # Set to True for more detailed extraction
enable_concurrency=True,
)
# Initialize parser with Azure OpenAI model
parser = VisionParser(
model_name="gpt-4o",
image_mode="url",
detailed_extraction=True, # Set to True for more detailed extraction
enable_concurrency=True,
openai_config={
"AZURE_ENDPOINT_URL": "https://****.openai.azure.com/", # replace with your azure endpoint url
"AZURE_DEPLOYMENT_NAME": "*******", # replace with azure deployment name, if needed
"AZURE_OPENAI_API_KEY": "***********", # replace with your azure openai api key
"AZURE_OPENAI_API_VERSION": "2024-08-01-preview", # replace with latest azure openai api version
},
)
# Initialize parser with Google Gemini model
parser = VisionParser(
model_name="gemini-1.5-flash",
api_key="your-gemini-api-key", # Get the Gemini API key from https://aistudio.google.com/app/apikey
temperature=0.7,
top_p=0.4,
image_mode="url",
detailed_extraction=True, # Set to True for more detailed extraction
enable_concurrency=True,
)
# Initialize parser with DeepSeek model
parser = VisionParser(
model_name="deepseek-chat",
api_key="your-deepseek-api-key", # Get the DeepSeek API key from https://platform.deepseek.com/api_keys
temperature=0.7,
top_p=0.4,
image_mode="url",
detailed_extraction=True, # Set to True for more detailed extraction
enable_concurrency=True,
)
This package supports the following Vision LLM models:
Model Name | Provider Name |
---|---|
gpt-4o | OpenAI |
gpt-4o-mini | OpenAI |
gemini-1.5-flash | |
gemini-2.0-flash-exp | |
gemini-1.5-pro | |
llava:13b | Ollama |
llava:34b | Ollama |
llama3.2-vision:11b | Ollama |
llama3.2-vision:70b | Ollama |
deepseek-chat | DeepSeek |
Vision Parse offers several customization parameters to enhance document processing:
Parameter | Description | Value Type |
---|---|---|
model_name | Name of the Vision LLM model to use | str |
custom_prompt | Define custom prompt for the model and it will be used as a suffix to the default prompt | str |
ollama_config | Specify custom configuration for Ollama client initialization | dict |
openai_config | Specify custom configuration for OpenAI, Azure OpenAI or DeepSeek client initialization | dict |
gemini_config | Specify custom configuration for Gemini client initialization | dict |
image_mode | Sets the image output format for the model i.e. if you want image url in markdown content or base64 encoded image | str |
detailed_extraction | Enable advanced content extraction to extract complex information such as LaTeX equations, tables, images, etc. | bool |
enable_concurrency | Enable parallel processing of multiple pages in a PDF document in a single request | bool |
Note: For more details on custom model configuration i.e. openai_config
, gemini_config
, and ollama_config
; please refer to docs/config.md.
I conducted benchmarking to evaluate Vision Parse's performance against MarkItDown and Nougat. The benchmarking was conducted using a curated dataset of 100 diverse machine learning papers from arXiv and used the Marker library to generate the ground truth markdown formatted data.
Since there are no other ground truth data available for this task, I relied on Marker library to generate the ground truth markdown formatted data.
Parser | Accuracy Score |
---|---|
Vision Parse | 92% |
MarkItDown | 67% |
Nougat | 79% |
Note: I used gpt-4o model for Vision Parse to extract markdown content from the pdf documents. I have used model parameter settings as in scoring.py
script. The above results may vary depending on the model you choose for Vision Parse and the model parameter settings.
You can benchmark the performance of Vision Parse on your machine using your own dataset. Run scoring.py
to generate a detailed comparison report in the output directory.
- Install packages from requirements.txt:
pip install --no-cache-dir -r benchmarks/requirements.txt
- Run the benchmark script:
# Change `pdf_path` to your pdf file path and `benchmark_results_path` to your desired output path
python benchmarks/scoring.py
Contributions to Vision Parse are welcome! Whether you're fixing bugs, adding new features, or creating example notebooks, your help is appreciated. Please check out contributing guidelines for instructions on setting up the development environment, code style requirements, and the pull request process.
This project is licensed under the MIT License - see the LICENSE file for details.