Skip to content

Latest commit

 

History

History
77 lines (75 loc) · 3.65 KB

repo_structure.md

File metadata and controls

77 lines (75 loc) · 3.65 KB

Repository Structure

.
├── agents
  └── __init__.py
  └── core.py
  └── BuildSQLAgent.py
  └── DebugSQLAgent.py
  └── DescriptionAgent.py
  └── EmbedderAgent.py
  └── ResponseAgent.py
  └── ValidateSQLAgent.py
  └── VisualizeAgent.py
└── Dockerfile
└── backend-apis
  └── __init__.py
  └── policy.yaml
  └── main.py
└── dbconnectors
  └── __init__.py
  └── core.py
  └── PgConnector.py
  └── BQConnector.py
└── docs
  └── best_practices.md
  └── faq.md
  └── repo_structure.md
└── embeddings
  └── __init__.py
  └── retrieve_embeddings.py
  └── store_embeddings.py
  └── kgq_embeddings.py
└── frontend
└── notebooks
  └── 0_CopyDataToBigQuery.ipynb
  └── 0_CopyDataToCloudSqlPG.ipynb
  └── 1_Setup_OpenDataQnA.ipynb
  └── 2_Run_OpenDataQnA.ipynb
  └── 3_LoadKnownGoodSQL.ipynb
└── scripts
  └── tables_columns_descriptions.csv
  └── copy_select_table_column_bigquery.csv
  └── data_source_list.csv
  └── known_good_sql.csv
  └── save_config.py
  └── Scenarios Sample.csv
└── utilities
  └── __init__.py
└── prompts.yaml
└── pyproject.toml
└── config.ini
└── env_setup.py
└── opendataqna.py
  • /agents: Source code for the LLM Agents.
  • /backend-apis : Cloud Run based api deployement for frontend to demo the solution on a UI
  • /dbconnectors: Source code for database connectors.
  • /docs: Documentations, including FAQ & Best Practices for using this library.
  • /embeddings: Source code for creating and storing embeddings.
  • /frontend : Angular based frontend code to deploy demo app using the API developed with /main.py
  • /notebooks: Sample notebooks demonstrating the usage of this library.
  • /scripts: Additional scripts for initial setup.
  • /Dockerfile: Dockerfile for deployment of backend apis. It is placed at the root folder to give it right context and access to the files.
  • /env_setup.py: Python file for initial setup.
  • /opendataqna.py: Python file for running the main pipeline.
  • /prompts.yaml: Yaml file that contains the prompts used by the solution. It also provides users the ability to prompt extra context for the use case if any.