Skip to content
This repository has been archived by the owner on Aug 5, 2022. It is now read-only.

Commit

Permalink
Revert fix the bug of SSD NMS Noise raised by community into master_c…
Browse files Browse the repository at this point in the history
…lean
  • Loading branch information
daisyden committed May 22, 2019
1 parent f259210 commit 3f494b4
Show file tree
Hide file tree
Showing 5 changed files with 54 additions and 19 deletions.
17 changes: 17 additions & 0 deletions examples/faster-rcnn/tools/test_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,19 @@ def parse_args():

parser.add_argument('-wi', '--conv_algo', dest='conv_algo', action="store_true", default=False,
help='to choose the convolution algorithm')

parser.add_argument('-1st', '--enable_1st_conv_layer', dest='enable_1st_conv_layer', action="store_true", default=False,
help='enable 1st conv layer')

parser.add_argument('-fc', '--fc_int8', dest='fc_int8', action="store_true", default=False,
help='enable int8 fc layer')

parser.add_argument('-uff', '--disable_force_fp32', dest='disable_force_fp32', action="store_true", default=False,
help='to disable force fp32 output in conv/fc + fp32')

parser.add_argument('-ucac', '--disable_cac_unify', dest='disable_cac_unify', action="store_true", default=False,
help='to disable scale unify in conv/fc + avg pooling + conv/fc')

if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
Expand Down Expand Up @@ -119,6 +130,8 @@ def parse_args():
if args.quantized_prototxt == None:
test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis)
else:
if args.fc_int8:
calibrator.enable_fc_int8()
(blobs, params, top_blobs_map, bottom_blobs_map, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, winograd_convolutions) = sample_net(args.prototxt, net, imdb, args.sample_iters, args.quant_mode, args.enable_1st_conv_layer)

(inputs_max, outputs_max, inputs_min) = sampling.calibrate_activations(blobs, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, args.calibration_algos, "SINGLE", args.conv_algo)
Expand All @@ -130,3 +143,7 @@ def parse_args():
with open(compile_net_path, "w") as f:
f.write(compiled_net_str)
calibrator.transform_convolutions(args.quantized_prototxt, compile_net_path, top_blobs_map, bottom_blobs_map, args.unsigned_range, args.concat_use_fp32, args.unify_concat_scales, args.conv_algo, args.enable_1st_conv_layer)
if not args.disable_force_fp32:
calibrator.force_fp32_opt(args.quantized_prototxt)
if not args.disable_cac_unify:
calibrator.cac_opt(args.quantized_prototxt)
17 changes: 17 additions & 0 deletions examples/rfcn/tools/test_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,19 @@ def parse_args():

parser.add_argument('-wi', '--conv_algo', dest='conv_algo', action="store_true", default=False,
help='to choose the convolution algorithm')

parser.add_argument('-1st', '--enable_1st_conv_layer', dest='enable_1st_conv_layer', action="store_true", default=False,
help='enable 1st conv layer')

parser.add_argument('-fc', '--fc_int8', dest='fc_int8', action="store_true", default=False,
help='enable int8 fc layer')

parser.add_argument('-uff', '--disable_force_fp32', dest='disable_force_fp32', action="store_true", default=False,
help='to disable force fp32 output in conv/fc + fp32')

parser.add_argument('-ucac', '--disable_cac_unify', dest='disable_cac_unify', action="store_true", default=False,
help='to disable scale unify in conv/fc + avg pooling + conv/fc')

if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
Expand Down Expand Up @@ -126,6 +137,8 @@ def parse_args():
if args.quantized_prototxt == None:
test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis)
else:
if args.fc_int8:
calibrator.enable_fc_int8()
(blobs, params, top_blobs_map, bottom_blobs_map, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, winograd_convolutions) = sample_net(args.prototxt, net, imdb, args.sample_iters, args.quant_mode, args.enable_1st_conv_layer)

(inputs_max, outputs_max, inputs_min) = sampling.calibrate_activations(blobs, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, args.calibration_algos, "SINGLE", args.conv_algo)
Expand All @@ -137,3 +150,7 @@ def parse_args():
with open(compile_net_path, "w") as f:
f.write(compiled_net_str)
calibrator.transform_convolutions(args.quantized_prototxt, compile_net_path, top_blobs_map, bottom_blobs_map, args.unsigned_range, args.concat_use_fp32, args.unify_concat_scales, args.conv_algo, args.enable_1st_conv_layer)
if not args.disable_force_fp32:
calibrator.force_fp32_opt(args.quantized_prototxt)
if not args.disable_cac_unify:
calibrator.cac_opt(args.quantized_prototxt)
17 changes: 14 additions & 3 deletions scripts/calibrator.py
Original file line number Diff line number Diff line change
Expand Up @@ -471,7 +471,11 @@ def force_fp32_opt(quantized_prototxt):
if base_net.layer[index].top[0] in layer_bottom_name_map.keys():
bottom_layer_indexes=layer_bottom_name_map[base_net.layer[index].top[0]]
for bottom_layer_index in bottom_layer_indexes:
if base_net.layer[bottom_layer_index].type in int8_layers:
next_layer = base_net.layer[bottom_layer_index]
if next_layer.top == next_layer.bottom and next_layer.type not in int8_layers:
force_fp32 = True
break
if next_layer.type in int8_layers:
force_fp32 = False
if force_fp32 or index == np.max(quantize_layers_indexes):
new_net_index=find_index_by_name(base_net.layer[index].name, layer_infos)
Expand Down Expand Up @@ -565,6 +569,14 @@ def cac_opt(quantized_prototxt):
f.write(str(new_net))
print('cac opt done')

def enable_fc_int8():
local_q = quantize_layers + ["InnerProduct"]
local_i = int8_layers + ["InnerProduct"]
global quantize_layers
global int8_layers
quantize_layers = local_q
int8_layers = local_i


if __name__ == '__main__':
usage_string = 'Usage: 1.Build the caffe\n ' \
Expand Down Expand Up @@ -712,8 +724,7 @@ def cac_opt(quantized_prototxt):
user_conv_algo = params.conv_algo

if params.fc_int8:
quantize_layers.append("InnerProduct")
int8_layers.append("InnerProduct")
enable_fc_int8()

try:
toleration = float(params.loss)
Expand Down
2 changes: 1 addition & 1 deletion src/caffe/layers/mkldnn_inner_product_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -303,7 +303,7 @@ void MKLDNNInnerProductLayer<Dtype>::InitInnerProductFwd(const vector<Blob<Dtype
std::vector<float> scale_top(1);
scale_top[0] = 1.0f;
if(this->need_quantize_) scale_top = this->scale_out_;
fwd_top_data.reset(new MKLDNNData<Dtype>(usr_top_data_memory_pd, prv_fwd_top_data_memory_pd, top[0], this));
fwd_top_data.reset(new MKLDNNData<Dtype>(usr_top_data_memory_pd, prv_fwd_top_data_memory_pd, top[0], this, scale_top));
fwd_top_data ->name = "fwd_top_data @ " + this->layer_param_.name();
fwd_top_data_memory = fwd_top_data->create_output_memory();

Expand Down
20 changes: 5 additions & 15 deletions src/caffe/util/bbox_util.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2267,22 +2267,12 @@ void GetMaxScoreIndex(const vector<float>& scores, const float threshold,
const int top_k, vector<pair<float, int> >* score_index_vec) {
// Generate index score pairs.
#ifdef _OPENMP
#pragma omp parallel
#endif
{
vector<pair<float, int> > prv;
#ifdef _OPENMP
#pragma omp for nowait
#pragma omp parallel for
#endif
for (int i = 0; i < scores.size(); ++i) {
if (scores[i] > threshold) {
prv.push_back(std::make_pair(scores[i], i));
}
for (int i = 0; i < scores.size(); ++i) {
if (scores[i] > threshold) {
score_index_vec->at(i) = std::make_pair(scores[i], i);
}
#ifdef _OPENMP
#pragma omp critical
#endif
score_index_vec->insert(score_index_vec->end(), prv.begin(), prv.end());
}

// Sort the score pair according to the scores in descending order
Expand Down Expand Up @@ -2442,7 +2432,7 @@ void ApplyNMSFast(const vector<NormalizedBBox>& bboxes,
CHECK_EQ(bboxes.size(), scores.size())
<< "bboxes and scores have different size.";
// Get top_k scores (with corresponding indices).
vector<pair<float, int> > score_index_vec;
vector<pair<float, int> > score_index_vec(scores.size());
GetMaxScoreIndex(scores, score_threshold, top_k, &score_index_vec);
// Do nms.
float adaptive_threshold = nms_threshold;
Expand Down

0 comments on commit 3f494b4

Please sign in to comment.