Skip to content

Commit

Permalink
add new vae and small changes in basic code
Browse files Browse the repository at this point in the history
  • Loading branch information
kisnikser committed Nov 4, 2024
1 parent 91c6511 commit d902ffd
Show file tree
Hide file tree
Showing 4 changed files with 237 additions and 75 deletions.
131 changes: 76 additions & 55 deletions basic/basic_code.ipynb

Large diffs are not rendered by default.

26 changes: 9 additions & 17 deletions demo/vae_gaussian_bernoulli.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,6 @@
datasets.MNIST('./data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)

INITIAL_TEMP = 1.0
ANNEAL_RATE = 0.00003
MIN_TEMP = 0.1

temp = INITIAL_TEMP
steps = 0


Expand All @@ -66,7 +61,7 @@ def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))

def forward(self, x, temp=1.0, hard=False):
def forward(self, x, hard=False):
mu = self.encode(x.view(-1, 784))
q_z = GaussianRelaxedBernoulli(mu, torch.tensor([1], device=device))
z = q_z.rsample() # sample with reparameterization
Expand All @@ -84,26 +79,26 @@ def forward(self, x, temp=1.0, hard=False):


# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, prior=0.5, eps=1e-10):
def loss_function(recon_x, x, q_z, prior=0.5, eps=1e-10):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
# You can also compute p(x|z) as below, for binary output it reduces
# to binary cross entropy error, for gaussian output it reduces to
t1 = mu * ((mu + eps) / prior).log()
t2 = (1 - mu) * ((1 - mu + eps) / (1 - prior)).log()
t1 = q_z * ((q_z + eps) / prior).log()
t2 = (1 - q_z) * ((1 - q_z + eps) / (1 - prior)).log()
KLD = torch.sum(t1 + t2, dim=-1).sum()

return BCE + KLD


def train(epoch):
global temp, steps
global steps
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, q_z = model(data, temp=temp)
loss = loss_function(recon_batch, data, q_z)
recon_batch, z = model(data)
loss = loss_function(recon_batch, data, z)
loss.backward()
train_loss += loss.item()
optimizer.step()
Expand All @@ -115,22 +110,19 @@ def train(epoch):
loss.item() / len(data)))

steps += 1
if steps % 1000 == 0:
temp = max(temp * np.exp(-ANNEAL_RATE * steps), MIN_TEMP)

print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))


def test(epoch):
global temp
model.eval()
test_loss = 0
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
recon_batch, q_z = model(data, temp=temp)
test_loss += loss_function(recon_batch, data, q_z).item()
recon_batch, z = model(data)
test_loss += loss_function(recon_batch, data, z).item()
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
Expand Down
149 changes: 149 additions & 0 deletions demo/vae_straight_through_bernoulli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import os
import argparse
import numpy as np
import torch
import sys
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src')))
from relaxit.distributions import StraightThroughBernoulli

parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if args.cuda else "cpu")

os.makedirs('./results/vae_straight_through_bernoulli', exist_ok=True)

kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)

steps = 0


class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()

self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)

def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc2(h1)

def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))

def forward(self, x, hard=False):
a = self.encode(x.view(-1, 784))
q_z = StraightThroughBernoulli(a)
z = q_z.rsample() # sample with reparameterization

if hard:
# No step function in torch, so using sign instead
z_hard = 0.5 * (torch.sign(z) + 1)
z = z + (z_hard - z).detach()

return self.decode(z), a


model = VAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)


# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, a, prior=0.5, eps=1e-10):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
# You can also compute p(x|z) as below, for binary output it reduces
# to binary cross entropy error, for gaussian output it reduces to

# p = вер выпадения 1 в straight through
p = torch.nn.functional.sigmoid(a)
t1 = p * ((p + eps) / prior).log()
t2 = (1 - p) * ((1 - p + eps) / (1 - prior)).log()
KLD = torch.sum(t1 + t2, dim=-1).sum()

return BCE + KLD


def train(epoch):
global steps
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, a = model(data)
loss = loss_function(recon_batch, data, a)
loss.backward()
train_loss += loss.item()
optimizer.step()

if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))

steps += 1

print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))


def test(epoch):
model.eval()
test_loss = 0
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
recon_batch, a = model(data)
test_loss += loss_function(recon_batch, data, a).item()
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.cpu(),
'results/vae_straight_through_bernoulli/reconstruction_' + str(epoch) + '.png', nrow=n)

test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))


if __name__ == "__main__":
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
with torch.no_grad():
sample = np.random.binomial(1, 0.5, size=(64, 20))
sample = torch.from_numpy(np.float32(sample)).to(device)
sample = model.decode(sample).cpu()
save_image(sample.view(64, 1, 28, 28),
'results/vae_straight_through_bernoulli/sample_' + str(epoch) + '.png')
6 changes: 3 additions & 3 deletions demo/visualization.ipynb

Large diffs are not rendered by default.

0 comments on commit d902ffd

Please sign in to comment.