Skip to content

Commit

Permalink
Use UNIX line endings
Browse files Browse the repository at this point in the history
Replaced CRLF with LF line endings. All other files use UNIX style line endings.
  • Loading branch information
colesbury committed Jun 17, 2015
1 parent 389830c commit 7537d3d
Show file tree
Hide file tree
Showing 3 changed files with 239 additions and 239 deletions.
44 changes: 22 additions & 22 deletions Power.lua
Original file line number Diff line number Diff line change
@@ -1,22 +1,22 @@
local Power, parent = torch.class('nn.Power','nn.Module')

function Power:__init(p)
parent.__init(self)
self.pow = p
if not p then
error('nn.Power(power)')
end
end

function Power:updateOutput(input)
self.output:resizeAs(input):copy(input)
self.output:pow(self.pow)
return self.output
end

function Power:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):copy(input)
self.gradInput:pow(self.pow - 1)
self.gradInput:cmul(gradOutput):mul(self.pow)
return self.gradInput
end
local Power, parent = torch.class('nn.Power','nn.Module')

function Power:__init(p)
parent.__init(self)
self.pow = p
if not p then
error('nn.Power(power)')
end
end

function Power:updateOutput(input)
self.output:resizeAs(input):copy(input)
self.output:pow(self.pow)
return self.output
end

function Power:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):copy(input)
self.gradInput:pow(self.pow - 1)
self.gradInput:cmul(gradOutput):mul(self.pow)
return self.gradInput
end
116 changes: 58 additions & 58 deletions SpatialUpSamplingNearest.lua
Original file line number Diff line number Diff line change
@@ -1,58 +1,58 @@
local SpatialUpSamplingNearest, parent = torch.class('nn.SpatialUpSamplingNearest', 'nn.Module')

--[[
Applies a 2D up-sampling over an input image composed of several input planes.
The upsampling is done using the simple nearest neighbor technique.
The Y and X dimensions are assumed to be the last 2 tensor dimensions. For
instance, if the tensor is 4D, then dim 3 is the y dimension and dim 4 is the x.
owidth = width*scale_factor
oheight = height*scale_factor
--]]

function SpatialUpSamplingNearest:__init(scale)
parent.__init(self)

self.scale_factor = scale
if self.scale_factor < 1 then
error('scale_factor must be greater than 1')
end
if math.floor(self.scale_factor) ~= self.scale_factor then
error('scale_factor must be integer')
end
self.inputSize = torch.LongStorage(4)
self.outputSize = torch.LongStorage(4)
self.usage = nil
end

function SpatialUpSamplingNearest:updateOutput(input)
if input:dim() ~= 4 and input:dim() ~= 3 then
error('SpatialUpSamplingNearest only support 3D or 4D tensors')
end
-- Copy the input size
local xdim = input:dim()
local ydim = input:dim() - 1
for i = 1, input:dim() do
self.inputSize[i] = input:size(i)
self.outputSize[i] = input:size(i)
end
self.outputSize[ydim] = self.outputSize[ydim] * self.scale_factor
self.outputSize[xdim] = self.outputSize[xdim] * self.scale_factor
-- Resize the output if needed
if input:dim() == 3 then
self.output:resize(self.outputSize[1], self.outputSize[2],
self.outputSize[3])
else
self.output:resize(self.outputSize)
end
input.nn.SpatialUpSamplingNearest_updateOutput(self, input)
return self.output
end

function SpatialUpSamplingNearest:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input)
input.nn.SpatialUpSamplingNearest_updateGradInput(self, input, gradOutput)
return self.gradInput
end
local SpatialUpSamplingNearest, parent = torch.class('nn.SpatialUpSamplingNearest', 'nn.Module')

--[[
Applies a 2D up-sampling over an input image composed of several input planes.
The upsampling is done using the simple nearest neighbor technique.
The Y and X dimensions are assumed to be the last 2 tensor dimensions. For
instance, if the tensor is 4D, then dim 3 is the y dimension and dim 4 is the x.
owidth = width*scale_factor
oheight = height*scale_factor
--]]

function SpatialUpSamplingNearest:__init(scale)
parent.__init(self)

self.scale_factor = scale
if self.scale_factor < 1 then
error('scale_factor must be greater than 1')
end
if math.floor(self.scale_factor) ~= self.scale_factor then
error('scale_factor must be integer')
end
self.inputSize = torch.LongStorage(4)
self.outputSize = torch.LongStorage(4)
self.usage = nil
end

function SpatialUpSamplingNearest:updateOutput(input)
if input:dim() ~= 4 and input:dim() ~= 3 then
error('SpatialUpSamplingNearest only support 3D or 4D tensors')
end
-- Copy the input size
local xdim = input:dim()
local ydim = input:dim() - 1
for i = 1, input:dim() do
self.inputSize[i] = input:size(i)
self.outputSize[i] = input:size(i)
end
self.outputSize[ydim] = self.outputSize[ydim] * self.scale_factor
self.outputSize[xdim] = self.outputSize[xdim] * self.scale_factor
-- Resize the output if needed
if input:dim() == 3 then
self.output:resize(self.outputSize[1], self.outputSize[2],
self.outputSize[3])
else
self.output:resize(self.outputSize)
end
input.nn.SpatialUpSamplingNearest_updateOutput(self, input)
return self.output
end

function SpatialUpSamplingNearest:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input)
input.nn.SpatialUpSamplingNearest_updateGradInput(self, input, gradOutput)
return self.gradInput
end
Loading

0 comments on commit 7537d3d

Please sign in to comment.