-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2e0b0ca
commit 9e57537
Showing
3 changed files
with
311 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,14 +1,119 @@ | ||
from jax import config | ||
|
||
config.update("jax_enable_x64", True) | ||
config.update("jax_platform_name", "cpu") | ||
|
||
import os | ||
|
||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" | ||
|
||
import numpy as np | ||
import jax.numpy as jnp | ||
|
||
import neurax as nx | ||
from neurax.channels import HHChannel | ||
from neurax.synapses import GlutamateSynapse | ||
|
||
|
||
def test_compartment(): | ||
pass | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
comp = nx.Compartment().initialize() | ||
comp.insert(HHChannel()) | ||
comp.record() | ||
comp.stimulate(current) | ||
|
||
voltages = nx.integrate(comp, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_branch(): | ||
pass | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
branch.insert(HHChannel()) | ||
branch.comp(0.0).record() | ||
branch.comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(branch, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_cell(): | ||
pass | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
depth = 2 | ||
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
cell = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
cell.insert(HHChannel()) | ||
cell.branch(1).comp(0.0).record() | ||
cell.branch(1).comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(cell, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_net(): | ||
pass | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
depth = 2 | ||
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
|
||
connectivities = [ | ||
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) | ||
] | ||
network = nx.Network([cell1, cell2], connectivities) | ||
network.insert(HHChannel()) | ||
|
||
for cell_ind in range(2): | ||
network.cell(cell_ind).branch(1).comp(0.0).record() | ||
|
||
for stim_ind in range(2): | ||
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(network, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,14 +1,148 @@ | ||
def test_radius_length_compartment(): | ||
pass | ||
from jax import config | ||
|
||
config.update("jax_enable_x64", True) | ||
config.update("jax_platform_name", "cpu") | ||
|
||
def test_radius_length_branch(): | ||
pass | ||
import os | ||
|
||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" | ||
|
||
def test_radius_length_cell(): | ||
pass | ||
import numpy as np | ||
import jax.numpy as jnp | ||
|
||
import neurax as nx | ||
from neurax.channels import HHChannel | ||
from neurax.synapses import GlutamateSynapse | ||
|
||
def test_radius_length_net(): | ||
pass | ||
|
||
def test_radius_and_length_compartment(): | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
|
||
comp = nx.Compartment().initialize() | ||
|
||
np.random.seed(1) | ||
comp.set_params("length", 5 * np.random.rand(1)) | ||
comp.set_params("radius", np.random.rand(1)) | ||
|
||
comp.insert(HHChannel()) | ||
|
||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
comp.record() | ||
comp.stimulate(current) | ||
|
||
voltages = nx.integrate(comp, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_radius_and_length_branch(): | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
|
||
np.random.seed(1) | ||
branch.set_params("length", 5 * np.random.rand(2)) | ||
branch.set_params("radius", np.random.rand(2)) | ||
|
||
branch.insert(HHChannel()) | ||
|
||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
branch.comp(0.0).record() | ||
branch.comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(branch, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_radius_and_length_cell(): | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
|
||
depth = 2 | ||
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] | ||
num_branches = len(parents) | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
cell = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
|
||
np.random.seed(1) | ||
cell.set_params("length", 5 * np.random.rand(2 * num_branches)) | ||
cell.set_params("radius", np.random.rand(2 * num_branches)) | ||
|
||
cell.insert(HHChannel()) | ||
|
||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
cell.branch(1).comp(0.0).record() | ||
cell.branch(1).comp(0.0).stimulate(current) | ||
|
||
voltage = nx.integrate(cell, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_radius_and_length_net(): | ||
nseg_per_branch = 2 | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
|
||
depth = 2 | ||
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] | ||
num_branches = len(parents) | ||
|
||
comp = nx.Compartment().initialize() | ||
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize() | ||
cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents) | ||
|
||
np.random.seed(1) | ||
cell1.set_params("length", 5 * np.random.rand(2 * num_branches)) | ||
cell1.set_params("radius", np.random.rand(2 * num_branches)) | ||
|
||
np.random.seed(2) | ||
cell2.set_params("length", 5 * np.random.rand(2 * num_branches)) | ||
cell2.set_params("radius", np.random.rand(2 * num_branches)) | ||
|
||
connectivities = [ | ||
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) | ||
] | ||
network = nx.Network([cell1, cell2], connectivities) | ||
network.insert(HHChannel()) | ||
|
||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
for cell_ind in range(2): | ||
network.cell(cell_ind).branch(1).comp(0.0).record() | ||
|
||
for stim_ind in range(2): | ||
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(network, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,64 @@ | ||
from jax import config | ||
|
||
config.update("jax_enable_x64", True) | ||
config.update("jax_platform_name", "cpu") | ||
|
||
import os | ||
|
||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" | ||
|
||
import numpy as np | ||
import jax.numpy as jnp | ||
|
||
import neurax as nx | ||
from neurax.channels import HHChannel | ||
from neurax.synapses import GlutamateSynapse | ||
|
||
|
||
def test_swc_cell(): | ||
pass | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
|
||
cell = nx.read_swc() | ||
cell.insert(HHChannel()) | ||
cell.branch(1).comp(0.0).record() | ||
cell.branch(1).comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(cell, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
|
||
|
||
def test_swc_net(): | ||
pass | ||
dt = 0.025 # ms | ||
t_max = 5.0 # ms | ||
time_vec = jnp.arange(0.0, t_max + dt, dt) | ||
current = nx.step_current(0.5, 1.0, 0.02, time_vec) | ||
|
||
cell1 = nx.read_swc() | ||
cell2 = nx.read_swc() | ||
|
||
connectivities = [ | ||
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)]) | ||
] | ||
network = nx.Network([cell1, cell2], connectivities) | ||
network.insert(HHChannel()) | ||
|
||
for cell_ind in range(2): | ||
network.cell(cell_ind).branch(1).comp(0.0).record() | ||
|
||
for stim_ind in range(2): | ||
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current) | ||
|
||
voltages = nx.integrate(network, delta_t=dt) | ||
|
||
voltages_081123 = None | ||
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123)) | ||
tolerance = 0.0 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" |