Skip to content

Commit

Permalink
Write tests
Browse files Browse the repository at this point in the history
  • Loading branch information
michaeldeistler committed Nov 8, 2023
1 parent 2e0b0ca commit 9e57537
Show file tree
Hide file tree
Showing 3 changed files with 311 additions and 14 deletions.
113 changes: 109 additions & 4 deletions tests/neurax_identical/basic_modules.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,119 @@
from jax import config

config.update("jax_enable_x64", True)
config.update("jax_platform_name", "cpu")

import os

os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8"

import numpy as np
import jax.numpy as jnp

import neurax as nx
from neurax.channels import HHChannel
from neurax.synapses import GlutamateSynapse


def test_compartment():
pass
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

comp = nx.Compartment().initialize()
comp.insert(HHChannel())
comp.record()
comp.stimulate(current)

voltages = nx.integrate(comp, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_branch():
pass
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()
branch.insert(HHChannel())
branch.comp(0.0).record()
branch.comp(0.0).stimulate(current)

voltages = nx.integrate(branch, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_cell():
pass
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

depth = 2
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)]

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()
cell = nx.Cell([branch for _ in range(len(parents))], parents=parents)
cell.insert(HHChannel())
cell.branch(1).comp(0.0).record()
cell.branch(1).comp(0.0).stimulate(current)

voltages = nx.integrate(cell, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_net():
pass
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

depth = 2
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)]

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()
cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents)
cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents)

connectivities = [
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)])
]
network = nx.Network([cell1, cell2], connectivities)
network.insert(HHChannel())

for cell_ind in range(2):
network.cell(cell_ind).branch(1).comp(0.0).record()

for stim_ind in range(2):
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current)

voltages = nx.integrate(network, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"
150 changes: 142 additions & 8 deletions tests/neurax_identical/radius_and_length.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,148 @@
def test_radius_length_compartment():
pass
from jax import config

config.update("jax_enable_x64", True)
config.update("jax_platform_name", "cpu")

def test_radius_length_branch():
pass
import os

os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8"

def test_radius_length_cell():
pass
import numpy as np
import jax.numpy as jnp

import neurax as nx
from neurax.channels import HHChannel
from neurax.synapses import GlutamateSynapse

def test_radius_length_net():
pass

def test_radius_and_length_compartment():
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)

comp = nx.Compartment().initialize()

np.random.seed(1)
comp.set_params("length", 5 * np.random.rand(1))
comp.set_params("radius", np.random.rand(1))

comp.insert(HHChannel())

current = nx.step_current(0.5, 1.0, 0.02, time_vec)
comp.record()
comp.stimulate(current)

voltages = nx.integrate(comp, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_radius_and_length_branch():
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()

np.random.seed(1)
branch.set_params("length", 5 * np.random.rand(2))
branch.set_params("radius", np.random.rand(2))

branch.insert(HHChannel())

current = nx.step_current(0.5, 1.0, 0.02, time_vec)
branch.comp(0.0).record()
branch.comp(0.0).stimulate(current)

voltages = nx.integrate(branch, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_radius_and_length_cell():
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)

depth = 2
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)]
num_branches = len(parents)

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()
cell = nx.Cell([branch for _ in range(len(parents))], parents=parents)

np.random.seed(1)
cell.set_params("length", 5 * np.random.rand(2 * num_branches))
cell.set_params("radius", np.random.rand(2 * num_branches))

cell.insert(HHChannel())

current = nx.step_current(0.5, 1.0, 0.02, time_vec)
cell.branch(1).comp(0.0).record()
cell.branch(1).comp(0.0).stimulate(current)

voltage = nx.integrate(cell, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_radius_and_length_net():
nseg_per_branch = 2
dt = 0.025 # ms
t_max = 5.0 # ms

time_vec = jnp.arange(0.0, t_max + dt, dt)

depth = 2
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)]
num_branches = len(parents)

comp = nx.Compartment().initialize()
branch = nx.Branch([comp for _ in range(nseg_per_branch)]).initialize()
cell1 = nx.Cell([branch for _ in range(len(parents))], parents=parents)
cell2 = nx.Cell([branch for _ in range(len(parents))], parents=parents)

np.random.seed(1)
cell1.set_params("length", 5 * np.random.rand(2 * num_branches))
cell1.set_params("radius", np.random.rand(2 * num_branches))

np.random.seed(2)
cell2.set_params("length", 5 * np.random.rand(2 * num_branches))
cell2.set_params("radius", np.random.rand(2 * num_branches))

connectivities = [
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)])
]
network = nx.Network([cell1, cell2], connectivities)
network.insert(HHChannel())

current = nx.step_current(0.5, 1.0, 0.02, time_vec)

for cell_ind in range(2):
network.cell(cell_ind).branch(1).comp(0.0).record()

for stim_ind in range(2):
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current)

voltages = nx.integrate(network, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"
62 changes: 60 additions & 2 deletions tests/neurax_identical/swc.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,64 @@
from jax import config

config.update("jax_enable_x64", True)
config.update("jax_platform_name", "cpu")

import os

os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8"

import numpy as np
import jax.numpy as jnp

import neurax as nx
from neurax.channels import HHChannel
from neurax.synapses import GlutamateSynapse


def test_swc_cell():
pass
dt = 0.025 # ms
t_max = 5.0 # ms
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

time_vec = jnp.arange(0.0, t_max + dt, dt)

cell = nx.read_swc()
cell.insert(HHChannel())
cell.branch(1).comp(0.0).record()
cell.branch(1).comp(0.0).stimulate(current)

voltages = nx.integrate(cell, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"


def test_swc_net():
pass
dt = 0.025 # ms
t_max = 5.0 # ms
time_vec = jnp.arange(0.0, t_max + dt, dt)
current = nx.step_current(0.5, 1.0, 0.02, time_vec)

cell1 = nx.read_swc()
cell2 = nx.read_swc()

connectivities = [
nx.Connectivity(GlutamateSynapse(), [nx.Connection(0, 0, 0.0, 1, 0, 0.0)])
]
network = nx.Network([cell1, cell2], connectivities)
network.insert(HHChannel())

for cell_ind in range(2):
network.cell(cell_ind).branch(1).comp(0.0).record()

for stim_ind in range(2):
network.cell(stim_ind).branch(1).comp(0.0).stimulate(current)

voltages = nx.integrate(network, delta_t=dt)

voltages_081123 = None
max_error = np.max(np.abs(voltages[:, ::10] - voltages_081123))
tolerance = 0.0
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}"

0 comments on commit 9e57537

Please sign in to comment.