-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b9c0e3a
commit c1f29b7
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
from jax import config | ||
|
||
config.update("jax_enable_x64", True) | ||
config.update("jax_platform_name", "cpu") | ||
|
||
import os | ||
|
||
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".8" | ||
|
||
import jax.numpy as jnp | ||
import numpy as np | ||
from jax import value_and_grad | ||
|
||
import jaxley as jx | ||
from jaxley.channels import HH | ||
from jaxley.synapses import GlutamateSynapse, TestSynapse | ||
|
||
|
||
def test_network_grad(): | ||
comp = jx.Compartment() | ||
branch = jx.Branch(comp, nseg=4) | ||
cell = jx.Cell(branch, parents=[-1, 0, 0, 1, 1]) | ||
|
||
net = jx.Network([cell for _ in range(7)]) | ||
net.insert(HH()) | ||
|
||
_ = np.random.seed(0) | ||
pre = net.cell([0, 1, 2]) | ||
post = net.cell([3, 4, 5]) | ||
pre.fully_connect(post, GlutamateSynapse()) | ||
pre.fully_connect(post, TestSynapse()) | ||
|
||
pre = net.cell([3, 4, 5]) | ||
post = net.cell(6) | ||
pre.fully_connect(post, GlutamateSynapse()) | ||
pre.fully_connect(post, TestSynapse()) | ||
|
||
net.set("gS", 0.44) | ||
net.set("gC", 0.62) | ||
net.GlutamateSynapse([0, 2, 4]).set("gS", 0.32) | ||
net.TestSynapse([0, 3, 5]).set("gC", 0.24) | ||
|
||
current = jx.step_current(0.5, 0.5, 0.1, 0.025, 10.0) | ||
for i in range(3): | ||
net.cell(i).branch(0).comp(0.0).stimulate(current) | ||
|
||
net.cell(6).branch(0).comp(0.0).record() | ||
|
||
def simulate(params): | ||
return jnp.sum(jx.integrate(net, params=params)[0, ::40]) | ||
|
||
net.make_trainable("HH_gNa") | ||
net.cell([0, 1, 4]).make_trainable("HH_gK") | ||
net.cell("all").make_trainable("HH_gLeak") | ||
|
||
net.GlutamateSynapse.make_trainable("gS") | ||
net.TestSynapse([0, 2]).make_trainable("gC") | ||
|
||
params = net.get_parameters() | ||
grad_fn = value_and_grad(simulate) | ||
v, g = grad_fn(params) | ||
|
||
value_191223 = jnp.asarray(-610.61974598) | ||
max_error = np.max(np.abs(v - value_191223)) | ||
tolerance = 1e-8 | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" | ||
grad_191223 = [ | ||
{"HH_gNa": jnp.asarray([[-464.73131136]])}, | ||
{"HH_gK": jnp.asarray([[1.66229104], [0.22939515], [8.58333308]])}, | ||
{ | ||
"HH_gLeak": jnp.asarray( | ||
[ | ||
[-6.62407407e01], | ||
[-7.51550507e00], | ||
[-7.40674481e01], | ||
[-5.12236063e02], | ||
[-8.39096706e02], | ||
[-1.55093846e02], | ||
[-1.05950879e05], | ||
] | ||
) | ||
}, | ||
{"gS": jnp.asarray([[-43.44626964]])}, | ||
{"gC": jnp.asarray([[-0.03323429], [-0.01443804]])}, | ||
{ | ||
"s": jnp.asarray( | ||
[ | ||
[-2.57387592e-02], | ||
[-2.13110611e-01], | ||
[-3.23372955e-03], | ||
[-2.57387592e-02], | ||
[-6.63437449e-02], | ||
[-2.38958825e-02], | ||
[-1.10694577e-01], | ||
[-2.05030103e-01], | ||
[-1.80871330e-02], | ||
[-4.22333985e01], | ||
[-3.93051699e01], | ||
[-1.02174963e01], | ||
] | ||
) | ||
}, | ||
] | ||
|
||
for true_g, new_g in zip(grad_191223, g): | ||
for key in true_g: | ||
max_error = np.max(np.abs(true_g[key] - new_g[key])) | ||
tolerance = 1e-3 # Leak cond has a huge gradient... | ||
assert max_error <= tolerance, f"Error is {max_error} > {tolerance}" |