Skip to content

Index PyTorch Tests for Target Determination #166

Index PyTorch Tests for Target Determination

Index PyTorch Tests for Target Determination #166

name: Index PyTorch Tests for Target Determination
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * *'
permissions:
id-token: write
contents: read
jobs:
index:
runs-on: linux.g5.4xlarge.nvidia.gpu # 1 GPU A10G 24GB each
environment: target-determinator-env
steps:
- name: Clone PyTorch
uses: actions/checkout@v3
with:
path: pytorch
- name: Setup Linux
uses: ./pytorch/.github/actions/setup-linux
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9
working-directory: pytorch
- name: Use following to pull public copy of the image
id: print-ghcr-mirror
env:
ECR_DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
shell: bash
run: |
tag=${ECR_DOCKER_IMAGE##*/}
echo "docker pull ghcr.io/pytorch/ci-image:${tag/:/-}"
- name: Pull docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
id: install-nvidia-driver
uses: pytorch/test-infra/.github/actions/setup-nvidia@main
- name: Clone CodeLlama
uses: actions/checkout@v3
with:
repository: osalpekar/codellama
ref: 1ec50e0cfc0fadc3b6ceb146617e2119ab26eb34
path: codellama
- name: Clone Target Determination Code
uses: actions/checkout@v3
with:
repository: osalpekar/llm-target-determinator
ref: v0.0.2
path: llm-target-determinator
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v3
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_target_determinator_s3_read_write
aws-region: us-east-1
- name: Download checkpoint
shell: bash
env:
AWS_DEFAULT_REGION: us-east-1
run: |
# Do this outside of docker so I don't have to put env vars in
pip3 install awscli==1.29.40
cd codellama
mkdir "CodeLlama-7b-Python"
aws s3 cp \
"s3://target-determinator-assets/CodeLlama-7b-Python" \
"CodeLlama-7b-Python" \
--recursive
- name: Run indexer
shell: bash -l {0}
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
GITHUB_RUN_ID: ${{ github.run_id }}
AWS_DEFAULT_REGION: us-east-1
run: |
# detached container should get cleaned up by teardown_ec2_linux
container_name=$(docker run \
${GPU_FLAG:-} \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e AWS_DEFAULT_REGION \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--detach \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}"
)
chmod +x pytorch/.github/scripts/td_llm_indexer.sh
docker exec -t "${container_name}" sh -c 'pytorch/.github/scripts/td_llm_indexer.sh'
- name: Upload to s3
shell: bash -l {0}
env:
AWS_DEFAULT_REGION: us-east-1
run: |
cd llm-target-determinator/assets
TIMESTAMP=$(date -Iseconds)
ZIP_NAME="indexer-files-${TIMESTAMP}.zip"
# Create a zipfile with all the generated indices
zip -r "${ZIP_NAME}" indexer-files
# Note that because the below 2 operations are not atomic, there will
# be a period of a few seconds between these where there is no index
# present in the latest/ folder. To account for this, the retriever
# should have some retry logic with backoff to ensure fetching the
# index doesn't fail.
# Move the old index into the archived/ folder
aws s3 mv \
"s3://target-determinator-assets/indexes/latest" \
"s3://target-determinator-assets/indexes/archived" \
--recursive
# Move the new index into the latestl/ folder
aws s3 cp \
"${ZIP_NAME}" \
"s3://target-determinator-assets/indexes/latest/${ZIP_NAME}"
- name: Teardown Linux
uses: pytorch/test-infra/.github/actions/teardown-linux@main
if: always()
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true