Skip to content

Commit

Permalink
Update readme with note upon accepted JSS paper
Browse files Browse the repository at this point in the history
  • Loading branch information
joe4dev committed Jun 24, 2020
1 parent 358d264 commit 3c42ddb
Showing 1 changed file with 17 additions and 2 deletions.
19 changes: 17 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,26 @@ This replication package contains the raw dataset, scripts to produce all plots,

## Paper

J. Scheuner and P. Leitner, “Function-as-a-Service Performance Evaluation: A Multivocal Literature Review,” 2020, Preprint, [arXiv:2004.03276](https://arxiv.org/abs/2004.03276).
J. Scheuner and P. Leitner, “Function-as-a-Service Performance Evaluation: A Multivocal Literature Review,” Accepted at the [Journal of Systems and Software (JSS)](https://www.journals.elsevier.com/journal-of-systems-and-software), Preprint: [arXiv:2004.03276](https://arxiv.org/abs/2004.03276).

[![arXiv](https://img.shields.io/badge/arXiv-2004.03276-B31B1B.svg)](https://arxiv.org/abs/2004.03276)

>Function-as-a-Service (FaaS) is one form of the serverless cloud computing paradigm and is defined through FaaS platforms (e.g., AWS Lambda) executing event-triggered code snippets (i.e., functions). Many studies that empirically evaluate the performance of such FaaS platforms have started to appear but we are currently lacking a comprehensive understanding of the overall domain. To address this gap, we conducted a multivocal literature review (MLR) covering 112 studies from academic (51) and grey (61) literature. We find that existing work mainly studies the AWS Lambda platform and focuses on micro-benchmarks using simple functions to measure CPU speed and FaaS platform overhead (i.e., container cold starts). Further, we discover a mismatch between academic and industrial sources on tested platform configurations, find that function triggers remain insufficiently studied, and identify HTTP API gateways and cloud storages as the most used external service integrations. Following existing guidelines on experimentation in cloud systems, we discover many flaws threatening the reproducibility of experiments presented in the surveyed studies. We conclude with a discussion of gaps in literature and highlight methodological suggestions that may serve to improve future FaaS performance evaluation studies.
### Abstract

Function-as-a-Service (FaaS) is one form of the serverless cloud computing paradigm and is defined through FaaS platforms (e.g., AWS Lambda) executing event-triggered code snippets (i.e., functions). Many studies that empirically evaluate the performance of such FaaS platforms have started to appear but we are currently lacking a comprehensive understanding of the overall domain. To address this gap, we conducted a multivocal literature review (MLR) covering 112 studies from academic (51) and grey (61) literature. We find that existing work mainly studies the AWS Lambda platform and focuses on micro-benchmarks using simple functions to measure CPU speed and FaaS platform overhead (i.e., container cold starts). Further, we discover a mismatch between academic and industrial sources on tested platform configurations, find that function triggers remain insufficiently studied, and identify HTTP API gateways and cloud storages as the most used external service integrations. Following existing guidelines on experimentation in cloud systems, we discover many flaws threatening the reproducibility of experiments presented in the surveyed studies. We conclude with a discussion of gaps in literature and highlight methodological suggestions that may serve to improve future FaaS performance evaluation studies.

### Citation

```bibtex
@article{scheuner:20-jss,
title = "Function-as-a-Service Performance Evaluation: A Multivocal Literature Review",
journal = "Journal of Systems and Software",
note = "in press",
year = "2020",
url = "https://arxiv.org/abs/2004.03276",
author = "Joel Scheuner and Philipp Leitner"
}
```

## Dataset

Expand Down

0 comments on commit 3c42ddb

Please sign in to comment.