-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d9e84836-d1eb-4acc-ac9e-8e19ce3bb423", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9bdbf297-1b13-4bd3-8588-d10801b7448b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import scipy.io as sio\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ded5262c-5d5b-41e0-94db-1c21c35c992f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"##" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d215bfa0-d644-4e04-ab5c-98699f823a48", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"path_to_svhn_dataset = \"\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "befd0491-fe8d-4e00-99b2-eb1f1da23a15", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def open_svhn(mat_path: str, train=True):\n", | ||
" loaded_mat = sio.loadmat(mat_path)\n", | ||
"\n", | ||
" images = loaded_mat[\"X\"]\n", | ||
" print(\"X.shape\", images.shape)\n", | ||
" print(\"X.dtype\", images.dtype)\n", | ||
"\n", | ||
" labels = loaded_mat[\"y\"].squeeze()\n", | ||
" print(\"y.shape\", loaded_mat[\"y\"].shape)\n", | ||
" print(\"y.dtype\", loaded_mat[\"y\"].dtype)\n", | ||
"\n", | ||
" np.place(labels, labels == 10, 0)\n", | ||
" images = np.transpose(images, (3, 0, 1, 2))\n", | ||
"\n", | ||
" assert (\n", | ||
" images.shape == ((73257 if train else 26032), 32, 32, 3)\n", | ||
" and images.dtype == np.uint8\n", | ||
" )\n", | ||
" assert labels.shape == ((73257 if train else 26032),) and labels.dtype == np.uint8\n", | ||
" assert np.min(images) == 0 and np.max(images) == 255\n", | ||
" assert np.min(labels) == 0 and np.max(labels) == 9\n", | ||
"\n", | ||
" return images, labels, loaded_mat[\"X\"], loaded_mat[\"y\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fce351b7-6fd7-4046-8706-a3eced395455", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_images, train_labels, train_X, train_y = open_svhn(\n", | ||
" os.path.join(path_to_svhn_dataset, \"train_32x32.mat\"), train=True\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a79f95af-3d54-4da1-bcf6-68c65e6507b4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"test_images, test_labels, test_X, test_y = open_svhn(\n", | ||
" os.path.join(path_to_svhn_dataset, \"test_32x32.mat\"), train=False\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "bee0f789-336b-4020-9f85-900bd8fe3fdf", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"##" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4df9d24d-4f4d-42a9-a7af-1829c3305d6e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"np.random.seed(0)\n", | ||
"\n", | ||
"all_images = np.concatenate([train_images, test_images])\n", | ||
"all_labels = np.concatenate([train_labels, test_labels])\n", | ||
"\n", | ||
"all_idx = np.arange(len(all_images))\n", | ||
"new_train_idx = list()\n", | ||
"new_test_idx = list()\n", | ||
"\n", | ||
"new_train_labels = list()\n", | ||
"new_test_labels = list()\n", | ||
"\n", | ||
"new_train_images = list()\n", | ||
"new_test_images = list()\n", | ||
"\n", | ||
"for class_idx in list(range(10)):\n", | ||
" all_labels_idx = all_labels == class_idx\n", | ||
" train_labels_idx = train_labels == class_idx\n", | ||
" test_labels_idx = test_labels == class_idx\n", | ||
"\n", | ||
" n_of_test = int(test_labels_idx.sum())\n", | ||
" n_of_train = int(train_labels_idx.sum())\n", | ||
"\n", | ||
" new_class_test_indices = np.random.choice(\n", | ||
" n_of_test + n_of_train, n_of_test, replace=False\n", | ||
" )\n", | ||
" new_class_train_indices = np.array(\n", | ||
" [i for i in range(n_of_test + n_of_train) if i not in new_class_test_indices]\n", | ||
" )\n", | ||
"\n", | ||
" new_train_labels.extend(all_labels[all_labels_idx][new_class_train_indices])\n", | ||
" new_train_images.extend(all_images[all_labels_idx][new_class_train_indices])\n", | ||
" new_train_idx.extend(all_idx[all_labels_idx][new_class_train_indices])\n", | ||
"\n", | ||
" new_test_labels.extend(all_labels[all_labels_idx][new_class_test_indices])\n", | ||
" new_test_images.extend(all_images[all_labels_idx][new_class_test_indices])\n", | ||
" new_test_idx.extend(all_idx[all_labels_idx][new_class_test_indices])\n", | ||
"\n", | ||
"\n", | ||
"train_idx_shuffle = np.random.permutation(len(new_train_labels))\n", | ||
"test_idx_shuffle = np.random.permutation(len(new_test_labels))\n", | ||
"\n", | ||
"new_train_labels = np.array(new_train_labels)[train_idx_shuffle].squeeze()\n", | ||
"new_test_labels = np.array(new_test_labels)[test_idx_shuffle].squeeze()\n", | ||
"\n", | ||
"new_train_idx = np.array(new_train_idx)[train_idx_shuffle].squeeze()\n", | ||
"new_test_idx = np.array(new_test_idx)[test_idx_shuffle].squeeze()\n", | ||
"\n", | ||
"new_train_images = np.array(new_train_images)[train_idx_shuffle].squeeze()\n", | ||
"new_test_images = np.array(new_test_images)[test_idx_shuffle].squeeze()\n", | ||
"\n", | ||
"assert len(new_train_labels) == len(train_labels)\n", | ||
"assert len(new_test_labels) == len(test_labels)\n", | ||
"\n", | ||
"for i in range(10):\n", | ||
" assert (new_train_labels == i).sum() == (train_labels == i).sum()\n", | ||
"\n", | ||
"for i in range(10):\n", | ||
" assert (new_test_labels == i).sum() == (test_labels == i).sum()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a4a59c9f-0067-473e-bb7b-e8bb18a555a4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"##" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c3a89777-c1c2-4782-be94-4c3ac2ad63fe", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_mat = {\n", | ||
" \"X\": np.transpose(new_train_images, (1, 2, 3, 0)),\n", | ||
" \"y\": new_train_labels.reshape(-1, 1),\n", | ||
"}\n", | ||
"test_mat = {\n", | ||
" \"X\": np.transpose(new_test_images, (1, 2, 3, 0)),\n", | ||
" \"y\": new_test_labels.reshape(-1, 1),\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "332911f3-5517-4e29-b3e4-76e540dd81de", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sio.savemat(\"../dataset/train_32x32_remix.mat\", train_mat)\n", | ||
"sio.savemat(\"../dataset/test_32x32_remix.mat\", test_mat)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "72d479f3-390a-43b3-a2e5-fce9d9f88fe9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"np.save(\"../index/train_index_remix.npy\", new_train_idx)\n", | ||
"np.save(\"../index/test_index_remix.npy\", new_test_idx)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ad212a80-a213-4701-b424-4a1d4f0c6cd9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"##" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |