-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain_P.py
695 lines (596 loc) · 29.2 KB
/
Train_P.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
import json
import copy
import random
import sys
import numpy as np
import pickle as pk
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import scatter_mean, scatter_min
from pymatgen.core import Composition
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from Data import get_SourceElem, get_AnionPart, get_Source_Anion_ratio
from Model import PrecursorClassifier, collate_batch
random.seed(8888)
torch.manual_seed(8888)
np.random.seed(8888)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def composition2graph(composition, embedding_dict):
comp_dict = Composition(composition).get_el_amt_dict()
elements_seq = list(comp_dict.keys())
weights = list(comp_dict.values())
weights = np.atleast_2d(weights).T / np.sum(weights)
try:
atom_fea = np.vstack(
[np.array(embedding_dict[str(element)]) for element in elements_seq]
)
except Exception as ex:
raise NotImplementedError(
f"{ex} in '{composition}' has no embedding vector"
)
env_idx = list(range(len(elements_seq)))
if len(env_idx) == 1:
self_fea_idx = [0]
nbr_fea_idx = [0]
else:
self_fea_idx = []
nbr_fea_idx = []
nbrs = len(elements_seq) - 1
for i, _ in enumerate(elements_seq):
self_fea_idx += [i] * nbrs
nbr_fea_idx += env_idx[:i] + env_idx[i + 1 :]
# convert all data to tensors
atom_weights = torch.Tensor(weights)
atom_fea = torch.Tensor(atom_fea)
self_fea_idx = torch.LongTensor(self_fea_idx)
nbr_fea_idx = torch.LongTensor(nbr_fea_idx)
return ((atom_weights, atom_fea, self_fea_idx, nbr_fea_idx),
composition,
), elements_seq
def composition2fea(composition, embedding_dict):
comp_dict = Composition(composition).get_el_amt_dict()
elements_seq = list(comp_dict.keys())
weights = list(comp_dict.values())
weights = np.atleast_2d(weights).T / np.sum(weights)
try:
atom_fea = np.vstack(
[np.array(embedding_dict[str(element)]) for element in elements_seq]
)
except Exception as ex:
raise NotImplementedError(
f"{ex} in '{composition}' has no embedding vector"
)
comp_fea = []
for i in range(len(atom_fea)):
comp_fea.append(atom_fea[i] * weights[i])
comp_fea = np.array(comp_fea)
comp_fea = comp_fea.sum(axis=0)
return comp_fea
def add_source_mask(graph, source_elem):
composition = graph[1]
comp_dict = Composition(composition).get_el_amt_dict()
mask_vec = []
for elem, stoi in comp_dict.items():
if str(elem) in source_elem:
mask_vec.append([source_elem.index(elem)])
else:
mask_vec.append([-1])
return (graph[0], graph[1], torch.tensor(mask_vec))
def anion_labeling(composition, pre_anion_part, source_elem):
pre_anion_part = list(pre_anion_part)
class_len = len(pre_anion_part)
y_label = np.zeros(class_len)
anion = get_AnionPart(composition, source_elem)
for i in range(class_len):
if anion == pre_anion_part[i]:
y_label[i] = 1
if sum(y_label) != 1:
raise NotImplementedError('labeling error')
return y_label
# Check model
def find_precursors_indiv(tar_composition,
top_k,
model,
device,embedding_dict,pre_anion_part,stoi_dict):
dataset = []
x_tar_set = []
elements_seq_set = []
for j in range(len(tar_composition)):
x_tar, elements_seq = composition2graph(tar_composition[j], embedding_dict)
x_tar = add_source_mask(x_tar, get_SourceElem([tar_composition[j]])[0])
x_tar_set.append(x_tar)
elements_seq_set.append(elements_seq)
source_elem_seq = []
source_elem_idx = []
count=0
for elem_seq in elements_seq_set:
for elem in elem_seq:
if (elem in get_SourceElem(tar_composition)[0]) and (elem not in source_elem_seq):
source_elem_seq.append(elem)
source_elem_idx.append(count)
count+=1
elif (elem in get_SourceElem(tar_composition)[0]) and (elem in source_elem_seq):
source_elem_idx.append(source_elem_seq.index(elem))
y = []
y2 = []
y_stoi = []
y_ratio = []
y.append(np.zeros(len(pre_anion_part)))
y2.append(np.zeros(len(embedding_dict['Li'])))
y_stoi.append('')
y_ratio.append([])
y = torch.Tensor(np.array(y))
y2 = torch.Tensor(np.array(y2))
dataset.append((x_tar_set, source_elem_idx, y, y2, y_stoi, y_ratio, 0))
input_tar, metal_mask, source_elem_idx, batch_y, batch_y2, batch_comp, batch_ratio, batch_i = collate_batch(dataset)
input_tar = tuple([tensor.to(device) for tensor in input_tar])
metal_mask = metal_mask.to(device)
source_elem_idx = source_elem_idx.to(device)
batch_y = batch_y.to(device)
batch_y = torch.where(batch_y==1)[1]
pre_set_idx = scatter_mean(input_tar[4][torch.where(metal_mask!=-1)[0]], source_elem_idx, dim=0)
# compute output
template_output, sourceelem_descriptor = model(input_tar, metal_mask, source_elem_idx, pre_set_idx)
score_matrix = []
pred_matrix = []
for k in range(top_k):
score_matrix.append(torch.kthvalue(F.softmax(template_output, dim=1), template_output.shape[1]-k)[0])
pred_matrix.append(torch.kthvalue(F.softmax(template_output, dim=1), template_output.shape[1]-k)[1])
score_matrix = torch.stack(score_matrix, dim=0)
pred_matrix = torch.stack(pred_matrix, dim=0)
kth_precursors = []
for k in range(top_k):
precursors_set = []
for l in range(len(source_elem_seq)):
pre_score = round(score_matrix[k,l].item(), 4)
source_part = source_elem_seq[l]
counter_part = list(pre_anion_part)[pred_matrix[k][l]]
stoi_space = stoi_dict[source_part+counter_part]
if len(stoi_space) == 0:
precursors_set.append(('('+source_part+')('+counter_part+')', pre_score))
else:
precursor = stoi_space[0]
precursors_set.append((precursor, pre_score))
kth_precursors.append(precursors_set)
return kth_precursors
def find_precursors_set(tar_composition,
top_k,
model,
device,embedding_dict,pre_anion_part,stoi_dict):
dataset = []
x_tar_set = []
elements_seq_set = []
for j in range(len(tar_composition)):
x_tar, elements_seq = composition2graph(tar_composition[j], embedding_dict)
x_tar = add_source_mask(x_tar, get_SourceElem([tar_composition[j]])[0])
x_tar_set.append(x_tar)
elements_seq_set.append(elements_seq)
source_elem_seq = []
source_elem_idx = []
count=0
for elem_seq in elements_seq_set:
for elem in elem_seq:
if (elem in get_SourceElem(tar_composition)[0]) and (elem not in source_elem_seq):
source_elem_seq.append(elem)
source_elem_idx.append(count)
count+=1
elif (elem in get_SourceElem(tar_composition)[0]) and (elem in source_elem_seq):
source_elem_idx.append(source_elem_seq.index(elem))
y = []
y2 = []
y_stoi = []
y_ratio = []
y.append(np.zeros(len(pre_anion_part)))
y2.append(np.zeros(len(embedding_dict['Li'])))
y_stoi.append('')
y_ratio.append([])
y = torch.Tensor(np.array(y))
y2 = torch.Tensor(np.array(y2))
dataset.append((x_tar_set, source_elem_idx, y, y2, y_stoi, y_ratio, 0))
input_tar, metal_mask, source_elem_idx, batch_y, batch_y2, batch_comp, batch_ratio, batch_i = collate_batch(dataset)
input_tar = tuple([tensor.to(device) for tensor in input_tar])
metal_mask = metal_mask.to(device)
source_elem_idx = source_elem_idx.to(device)
batch_y = batch_y.to(device)
batch_y = torch.where(batch_y==1)[1]
pre_set_idx = scatter_mean(input_tar[4][torch.where(metal_mask!=-1)[0]], source_elem_idx, dim=0)
# compute output
template_output, sourceelem_descriptor = model(input_tar, metal_mask, source_elem_idx, pre_set_idx)
score_matrix = []
pred_matrix = []
for k in range(top_k):
score_matrix.append(torch.kthvalue(F.softmax(template_output, dim=1), template_output.shape[1]-k)[0])
pred_matrix.append(torch.kthvalue(F.softmax(template_output, dim=1), template_output.shape[1]-k)[1])
score_matrix = torch.stack(score_matrix, dim=0)
pred_matrix = torch.stack(pred_matrix, dim=0)
set_score_list = []
set_num = template_output.shape[0]
for elem_idx in range(set_num):
if elem_idx == 0:
set_score_list = score_matrix[:,elem_idx:elem_idx+1]
else:
set_score_list = torch.matmul(set_score_list, score_matrix[:,elem_idx:elem_idx+1].T).reshape(-1,1)
top_k_result = []
for k in range(top_k):
kst_score = round(torch.kthvalue(set_score_list.T, len(set_score_list)-k)[0].item(), 4)
kst_idx = torch.kthvalue(set_score_list.T, len(set_score_list)-k)[1].item()
kst_pre_set = []
for idx in range(set_num):
kst_pre_set.append(pred_matrix[int(kst_idx/(top_k**(set_num-idx-1))), idx].item())
kst_idx = kst_idx % (top_k**(set_num-idx-1))
top_k_result.append((kst_pre_set, kst_score))
kth_precursors = []
for k in range(len(top_k_result)):
set_score = top_k_result[k][1]
precursors_set = []
for l in range(len(source_elem_seq)):
source_part = source_elem_seq[l]
counter_part = list(pre_anion_part)[top_k_result[k][0][l]]
stoi_space = stoi_dict[source_part+counter_part]
if len(stoi_space) == 0:
precursors_set.append('('+source_part+')('+counter_part+')')
else:
precursor = stoi_space[0]
precursors_set.append(precursor)
kth_precursors.append((precursors_set, set_score))
return kth_precursors
if __name__ == "__main__":
with open("embedding/cgcnn-embedding.json", 'r', encoding='utf-8-sig') as json_file:
cgcnn = json.load(json_file)
with open("embedding/elem-embedding.json", 'r', encoding='utf-8-sig') as json_file:
elemnet = json.load(json_file)
with open("embedding/matscholar-embedding.json", 'r', encoding='utf-8-sig') as json_file:
matscholar = json.load(json_file)
with open("embedding/megnet16-embedding.json", 'r', encoding='utf-8-sig') as json_file:
megnet16 = json.load(json_file)
with open("embedding/onehot-embedding.json", 'r', encoding='utf-8-sig') as json_file:
onehot = json.load(json_file)
with open("embedding/cgcnn_hd_rcut4_nn8.element_embedding.json", 'r', encoding='utf-8-sig') as json_file:
cgcnn_hd = json.load(json_file)
embedding_dict = elemnet
training_type = input("Which model to test ? (RandSplit or TimeSplit) = ")
if training_type not in ['RandSplit', 'TimeSplit']:
print("Invalid name of model type !")
sys.exit()
if training_type == 'RandSplit':
check_time_transferability = False
else:
check_time_transferability = True
# Prepare data
if check_time_transferability == False:
file_path = "./dataset/InorgSyn_dataset_TP.json"
with open(file_path, "r") as json_file:
data = json.load(json_file)
else:
print("-----------Checking time transferability-----------")
file_path = "./dataset/InorgSyn_dataset_TP2.json"
with open(file_path, "r") as json_file:
data2 = json.load(json_file)
data_in = []
data_out = []
from datetime import datetime
for dd in data2:
if dd['pubdate'] != 'N/A':
pub_date1 = datetime.strptime(dd['pubdate'], "%Y-%m-%d")
pub_date2 = datetime.strptime("2016-01-01", "%Y-%m-%d")
day_diff = (pub_date2 - pub_date1).days
if day_diff <= 0:
data_out.append(dd)
else:
data_in.append(dd)
data = data_in + data_out
print(len(data_in), len(data_out), len(data))
file_path = "./dataset/pre_anion_part.json"
with open(file_path, "r") as json_file:
pre_anion_part = json.load(json_file)
file_path = "./dataset/stoi_dict.json"
with open(file_path, "r") as json_file:
stoi_dict = json.load(json_file)
dataset = []
for i in range(len(data)):
x_tar_set = []
elements_seq_set = []
for j in range(len(data[i]['Target'])):
x_tar, elements_seq = composition2graph(data[i]['Target'][j], embedding_dict)
x_tar = add_source_mask(x_tar, get_SourceElem([data[i]['Target'][j]])[0])
x_tar_set.append(x_tar)
elements_seq_set.append(elements_seq)
source_elem_seq = []
source_elem_idx = []
count=0
for elem_seq in elements_seq_set:
for elem in elem_seq:
if (elem in get_SourceElem(data[i]['Target'])[0]) and (elem not in source_elem_seq):
source_elem_seq.append(elem)
source_elem_idx.append(count)
count+=1
elif (elem in get_SourceElem(data[i]['Target'])[0]) and (elem in source_elem_seq):
source_elem_idx.append(source_elem_seq.index(elem))
y = []
y2 = []
y_stoi = []
y_ratio = []
for elem in source_elem_seq:
for j in range(len(data[i]['Precursors'])):
if elem in list(Composition(data[i]['Precursors'][j]).get_el_amt_dict().keys()):
y.append(anion_labeling(data[i]['Precursors'][j], pre_anion_part, get_SourceElem(data[i]['Target'])[0]))
y2.append(composition2fea(data[i]['Precursors'][j], embedding_dict))
y_stoi.append(data[i]['Precursors'][j])
y_ratio.append(get_Source_Anion_ratio([data[i]['Precursors'][j]])[0])
if max(source_elem_idx)+1 != len(y):
raise NotImplementedError('labeling error')
y = torch.Tensor(np.array(y))
y2 = torch.Tensor(np.array(y2))
dataset.append((x_tar_set, source_elem_idx, y, y2, y_stoi, y_ratio, i))
def ratio2composition(s_elem, pre_template, r_ratio):
if pre_template != '':
ratio_comp = s_elem+'('+pre_template+')'+str(r_ratio)
r_int_comp = Composition(ratio_comp).get_integer_formula_and_factor()[0]
else:
r_int_comp = s_elem
return r_int_comp
def check_same_composition(ratio_comp, original_comp):
r_int_comp = Composition(ratio_comp).get_integer_formula_and_factor()[0]
o_int_comp = Composition(original_comp).get_integer_formula_and_factor()[0]
check = (r_int_comp == o_int_comp)
return check
for dd in dataset:
pre_list = dd[4]
r_stoi_list = dd[5]
for j, pre in enumerate(pre_list):
p_source_elem, _ = get_SourceElem([pre])
template = get_AnionPart(pre, p_source_elem)
if len(p_source_elem) == 1:
r_int_comp = ratio2composition(p_source_elem[0], template, r_stoi_list[j])
else:
raise NotImplementedError("No single source element precursors")
if check_same_composition(r_int_comp, pre):
pass
else:
print(p_source_elem[0], template, r_stoi_list[j], r_int_comp, pre)
if check_time_transferability == False:
train_set, test_set = train_test_split(dataset, test_size=0.1, random_state=7)
train_set, val_set = train_test_split(train_set, test_size=0.1112, random_state=7)
else:
train_set, test_set = dataset[:len(data_in)], dataset[len(data_in):]
train_set, val_set = train_test_split(train_set, test_size=0.1112, random_state=7)
if check_time_transferability == False:
print("Total dataset size : %d, (train/val/test = %d/%d/%d = 8:1:1)" % (len(dataset), len(train_set), len(val_set), len(test_set)))
else:
print("Total dataset size : %d, (train/val/test = %d/%d/%d)" % (len(dataset), len(train_set), len(val_set), len(test_set)))
data_params = {"batch_size": 128, "num_workers": 0, "pin_memory": False,
"shuffle": False, "collate_fn": collate_batch,
"worker_init_fn": seed_worker}
train_idx = list(range(len(train_set)))
val_idx = list(range(len(val_set)))
test_idx = list(range(len(test_set)))
train_set = torch.utils.data.Subset(train_set, train_idx[0::1])
val_set = torch.utils.data.Subset(val_set, val_idx[0::1])
test_set = torch.utils.data.Subset(test_set, test_idx[0::1])
train_generator = DataLoader(train_set, **data_params)
val_generator = DataLoader(val_set, **data_params)
test_generator = DataLoader(test_set, **data_params)
# Prepare model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
"""
Available model_mode ;
1. pooling_mode, globalfactor, gru_mode = False, False, False (ElemwiseRetro)
2. pooling_mode, globalfactor, gru_mode = False, False, True (Source elem-wise)
3. pooling_mode, globalfactor, gru_mode = False, True, True (Source elem-wise w. GLA)
4. pooling_mode, globalfactor, gru_mode = True, False, True (GLA)
"""
pooling_mode = False # True : weighted-attentioned mean pooling / False : source element-wise
globalfactor = False # True : concatenate initial node vector with global pooling vector
gru_mode = False # True : After GCN, GRU prediction / False : After GCN, ResNet prediction
print('[Pooling', pooling_mode, ', Globalfactor', globalfactor, ', GRU', gru_mode, '] mode')
model_params = {
"task": "Classification",
"pooling": pooling_mode,
"globalfactor": globalfactor,
"gru": gru_mode,
"device": device,
"robust": False,
"n_targets": len(pre_anion_part),
"elem_emb_len": len(embedding_dict['Li']),
"elem_fea_len": 64,
"n_graph": 3,
"elem_heads": 3,
"elem_gate": [256],
"elem_msg": [256],
"cry_heads": 3,
"cry_gate": [256],
"cry_msg": [256],
#"out_hidden": [1024, 512, 256, 128, 64],
"out_hidden": [512, 512, 512],
}
model = PrecursorClassifier(**model_params)
# Prepare learning parameters
num_epoch = 50
criterion = nn.CrossEntropyLoss()
lr = 3e-4
weight_decay=1e-6
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
# Train process
model.to(device)
train_loss_curve = []
val_loss_curve = []
best_val_loss = 10000000
best_model_wts = copy.deepcopy(model.state_dict())
for i in range(num_epoch):
loss_list = []
model.train()
for input_tar, metal_mask, source_elem_idx, batch_y, batch_y2, batch_comp, batch_ratio, batch_i in train_generator:
# move tensors to device (GPU or CPU)
input_tar = tuple([tensor.to(device) for tensor in input_tar])
metal_mask = metal_mask.to(device)
source_elem_idx = source_elem_idx.to(device)
batch_y = batch_y.to(device)
batch_y_id = torch.where(batch_y==1)[1]
batch_y2 = batch_y2.to(device)
pre_set_idx = scatter_mean(input_tar[4][torch.where(metal_mask!=-1)[0]], source_elem_idx, dim=0)
# compute output
template_output, atomic_descriptor = model(input_tar, metal_mask, source_elem_idx, pre_set_idx)
loss = criterion(template_output, batch_y_id)
loss_list.append(loss.data.cpu().numpy())
# compute gradient and take an optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss = np.mean(np.array(loss_list))
val_loss_list = []
model.eval()
with torch.no_grad(): # Make zero gradient
for input_tar, metal_mask, source_elem_idx, batch_y, batch_y2, batch_comp, batch_ratio, batch_i in val_generator:
# move tensors to device (GPU or CPU)
input_tar = tuple([tensor.to(device) for tensor in input_tar])
metal_mask = metal_mask.to(device)
source_elem_idx = source_elem_idx.to(device)
batch_y = batch_y.to(device)
batch_y_id = torch.where(batch_y==1)[1]
batch_y2 = batch_y2.to(device)
pre_set_idx = scatter_mean(input_tar[4][torch.where(metal_mask!=-1)[0]], source_elem_idx, dim=0)
# compute output
template_output, atomic_descriptor = model(input_tar, metal_mask, source_elem_idx, pre_set_idx)
loss = criterion(template_output, batch_y_id)
val_loss_list.append(loss.data.cpu().numpy())
val_loss = np.mean(np.array(val_loss_list))
if (i+1)%10==0:
print ('Epoch ', i+1, ', training loss: ', train_loss, ', val loss: ',val_loss)
train_loss_curve.append(train_loss)
val_loss_curve.append(val_loss)
if best_val_loss > val_loss:
best_val_loss = val_loss
best_model_wts = copy.deepcopy(model.state_dict())
model.load_state_dict(best_model_wts) # load best model weights
model.eval()
# Test
def find_top_k_prediction(output, pre_set_idx, top_k):
slicing_idx = []
for i in range(len(pre_set_idx)):
if i == 0:
prev_num = pre_set_idx[i]
slicing_idx.append(i)
else:
if prev_num == pre_set_idx[i]:
pass
else:
prev_num = pre_set_idx[i]
slicing_idx.append(i)
slicing_idx.append(len(pre_set_idx))
kth_output = []
for i, idx in enumerate(slicing_idx):
if i == 0:
prev_i = idx
else:
if i != len(slicing_idx)-1:
sliced_output = output[prev_i:idx]
prev_i = idx
else:
sliced_output = output[prev_i:]
score_matrix = []
pred_matrix = []
for k in range(top_k):
score_matrix.append(torch.kthvalue(F.softmax(sliced_output, dim=1), sliced_output.shape[1]-k)[0])
pred_matrix.append(torch.kthvalue(F.softmax(sliced_output, dim=1), sliced_output.shape[1]-k)[1])
score_matrix = torch.stack(score_matrix, dim=0)
pred_matrix = torch.stack(pred_matrix, dim=0)
set_score_list = []
set_num = sliced_output.shape[0]
for elem_idx in range(set_num):
if elem_idx == 0:
set_score_list = score_matrix[:,elem_idx:elem_idx+1]
else:
set_score_list = torch.matmul(set_score_list, score_matrix[:,elem_idx:elem_idx+1].T).reshape(-1,1)
sliced_top_k_result = []
for k in range(top_k):
#kst_score = round(torch.kthvalue(set_score_list.T, len(set_score_list)-k)[0].item(), 4)
kst_idx = torch.kthvalue(set_score_list.T, len(set_score_list)-k)[1].item()
kst_pre_set = []
for idx in range(set_num):
kst_pre_set.append(pred_matrix[int(kst_idx/(top_k**(set_num-idx-1))), idx].item())
kst_idx = kst_idx % (top_k**(set_num-idx-1))
#sliced_top_k_result.append((kst_pre_set, kst_score))
sliced_top_k_result.append(kst_pre_set)
kth_output.append(torch.tensor(sliced_top_k_result))
return torch.cat(kth_output, dim=1)
model.eval()
pred_value_te = []
true_value_te = []
pre_set_idx_te = []
top_k_pred_te = []
idx_te = []
total_batch_precursors = []
total_kth_pred_precursors = {}
for k in range(5):
total_kth_pred_precursors['Top-'+str(k+1)] = []
total_pre_set_count_te = 0
with torch.no_grad(): # Make zero gradient
for input_tar, metal_mask, source_elem_idx, batch_y, batch_y2, batch_comp, batch_ratio, batch_i in test_generator:
# move tensors to device (GPU or CPU)
input_tar = tuple([tensor.to(device) for tensor in input_tar])
metal_mask = metal_mask.to(device)
source_elem_idx = source_elem_idx.to(device)
batch_y = batch_y.to(device)
batch_y = torch.where(batch_y==1)[1]
pre_set_idx = scatter_mean(input_tar[4][torch.where(metal_mask!=-1)[0]], source_elem_idx, dim=0)
batch_targets = []
batch_precursors = []
for i in range(len(batch_comp)):
batch_targets.append(batch_comp[i][0])
for j in range(len(batch_comp[i][1])):
batch_precursors.append(batch_comp[i][1][j])
# compute output
template_output, atomic_descriptor = model(input_tar, metal_mask, source_elem_idx, pre_set_idx)
pred = template_output.max(dim=1)[1]
true = batch_y
pred_value_te += pred.tolist()
true_value_te += true.tolist()
idx_te += batch_i
# compute precursors set index
pre_set_idx += total_pre_set_count_te
pre_set_idx_te.append(pre_set_idx)
total_pre_set_count_te += len(batch_comp)
total_batch_precursors += batch_precursors
# compute top-k precursors set index
top_k_pred = find_top_k_prediction(template_output.cpu(), pre_set_idx.cpu(), 5)
top_k_pred_te.append(top_k_pred)
template_pred_value_te = np.array(pred_value_te)
template_true_value_te = np.array(true_value_te)
pre_set_idx_te= torch.cat(pre_set_idx_te, dim=0)
template_top_k_pred_te = torch.cat(top_k_pred_te, dim=1)
idx_te = np.array(idx_te)
accuracy_result = {}
template_te_accuracy = sum(template_pred_value_te == template_true_value_te)/len(template_true_value_te)
print("Accuracy for individual_precursor_template of testset :", round(template_te_accuracy,4))
accuracy_result['indiv_template_acc'] = round(template_te_accuracy,4)
for k in range(template_top_k_pred_te.shape[0]):
if k == 0:
b = torch.tensor((template_top_k_pred_te[k].numpy() == template_true_value_te), dtype=float)
te_set_accuracy = sum(scatter_min(torch.tensor((b>0).numpy(), dtype=float), pre_set_idx_te.cpu(), dim=0)[0])/len(test_set)
print("Top-%d Accuracy for precursors_template_set of testset : %f" %(k+1, round(float(te_set_accuracy),4)))
accuracy_result['Top-'+str(k+1)+'_template_set_acc'] = round(float(te_set_accuracy),4)
else:
b = b + torch.tensor((template_top_k_pred_te[k].numpy() == template_true_value_te), dtype=float)
te_set_accuracy = sum(scatter_min(torch.tensor((b>0).numpy(), dtype=float), pre_set_idx_te.cpu(), dim=0)[0])/len(test_set)
print("Top-%d Accuracy for precursors_template_set of testset : %f" %(k+1, round(float(te_set_accuracy),4)))
accuracy_result['Top-'+str(k+1)+'_template_set_acc'] = round(float(te_set_accuracy),4)
train_val_loss = {'Model_train_loss_curve' : train_loss_curve,
'Model_val_loss_curve' : val_loss_curve,
}
if check_time_transferability == False:
pk.dump(idx_te, open('./dataset/test_idx_TP.sav', 'wb'))
pk.dump(dataset, open('./dataset/preprocessed_data_TP.sav', 'wb'))
pk.dump(model, open('./model/trained_model_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'.sav', 'wb'))
pk.dump(accuracy_result, open('./result/accuracy_result_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'.sav', 'wb'))
pk.dump(train_val_loss, open('./result/train_val_loss_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'.sav', 'wb'))
else:
pk.dump(idx_te, open('./dataset/test_idx_TP_time.sav', 'wb'))
pk.dump(dataset, open('./dataset/preprocessed_data_TP_time.sav', 'wb'))
pk.dump(model, open('./model/trained_model_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'_time.sav', 'wb'))
pk.dump(accuracy_result, open('./result/accuracy_result_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'_time.sav', 'wb'))
pk.dump(train_val_loss, open('./result/train_val_loss_TP_'+str(pooling_mode)+str(globalfactor)+str(gru_mode)+'_time.sav', 'wb'))