Skip to content

Predicting Synthesis Recipes of Inorganic Crystal Materials using Elementwise Template Formulation

Notifications You must be signed in to change notification settings

kaist-amsg/ElemwiseRetro

Repository files navigation

ElemwiseRetro

Implementation of ElemwiseRetro developed by Prof. Yousung Jung group at Seoul National University

(contact: [email protected])

( Predicting Synthesis Recipes of Inorganic Crystal Materials using Elementwise Template Formulation )

DOI : 10.1039/D3SC03538G

Developer

Seongmin Kim ([email protected])

Python Dependencies

  • Python (version == 3.8.13)
  • Numpy (version == 1.22.3)
  • PyTorch (version == 1.11.0)
  • Pymatgen (version == 2022.9.21)

How to use

First, take zip files from https://zenodo.org/record/8123145 (from Ceder's group, textmined inorganic synthesis dataset), put them in "./dataset" folder, and execute the below codes


Data.py ; Preprocessing the data

Train_P.py ; Target -> Precursors prdicting model training and Save (ElemwiseRetro)

Train_T.py ; Target + Precursors -> Temperature predicting model training and Save

baseline_Model.py ; Template popularity based baseline model and Save

Test_TP.py ; Load trained models and show the results

About

Predicting Synthesis Recipes of Inorganic Crystal Materials using Elementwise Template Formulation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages