-
Notifications
You must be signed in to change notification settings - Fork 2.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
713fa09
commit 2937365
Showing
2 changed files
with
185 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
'''Train CIFAR10 with PyTorch.''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torch.nn.functional as F | ||
import torch.backends.cudnn as cudnn | ||
|
||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
import os | ||
import argparse | ||
|
||
from models import * | ||
|
||
|
||
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') | ||
parser.add_argument('--lr', default=0.1, type=float, help='learning rate') | ||
parser.add_argument('--resume', '-r', action='store_true', | ||
help='resume from checkpoint') | ||
parser.add_argument('--net', default='SimpleDLA') | ||
parser.add_argument('--train', type=bool, default=False) | ||
parser.add_argument('--test', type=bool, default=False) | ||
parser.add_argument('--epochs', type=int, default=200) | ||
parser.add_argument('--prune', type=bool, default=False) | ||
parser.add_argument('--pruning_rate', type=float, default=0.30) | ||
|
||
args = parser.parse_args() | ||
|
||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
best_acc = 0 # best test accuracy | ||
start_epoch = 0 # start from epoch 0 or last checkpoint epoch | ||
|
||
# Data | ||
print('==> Preparing data..') | ||
transform_train = transforms.Compose([ | ||
transforms.RandomCrop(32, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | ||
]) | ||
|
||
transform_test = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | ||
]) | ||
|
||
trainset = torchvision.datasets.CIFAR10( | ||
root='./data', train=True, download=True, transform=transform_train) | ||
trainloader = torch.utils.data.DataLoader( | ||
trainset, batch_size=128, shuffle=True, num_workers=2) | ||
|
||
testset = torchvision.datasets.CIFAR10( | ||
root='./data', train=False, download=True, transform=transform_test) | ||
testloader = torch.utils.data.DataLoader( | ||
testset, batch_size=100, shuffle=False, num_workers=2) | ||
|
||
classes = ('plane', 'car', 'bird', 'cat', 'deer', | ||
'dog', 'frog', 'horse', 'ship', 'truck') | ||
|
||
# Model | ||
print('==> Building model..') | ||
if args.net == 'VGG19': net = VGG('VGG19') | ||
elif args.net == 'ResNet18': net = ResNet18() | ||
elif args.net == 'PreActResNet18': net = PreActResNet18() | ||
elif args.net == 'GoogLeNet': net = GoogLeNet() | ||
elif args.net == 'DenseNet121': net = DenseNet121() | ||
elif args.net == 'ResNeXt29_2x64d': net = ResNeXt29_2x64d() | ||
elif args.net == 'MobileNet': net = MobileNet() | ||
elif args.net == 'MobileNetV2': net = MobileNetV2() | ||
elif args.net == 'DPN92': net = DPN92() | ||
elif args.net == 'ShuffleNetG2': net = ShuffleNetG2() | ||
elif args.net == 'SENet18': net = SENet18() | ||
elif args.net == 'ShuffleNetV2': net = ShuffleNetV2(1) | ||
elif args.net == 'EfficientNetB0': net = EfficientNetB0() | ||
elif args.net == 'RegNetX_200MF': net = RegNetX_200MF() | ||
elif args.net == 'SimpleDLA': net = SimpleDLA() | ||
|
||
# Borrow sparsity() and prune() from | ||
# https://github.com/ultralytics/yolov5/blob/a2a1ed201d150343a4f9912d644be2b210206984/utils/torch_utils.py#L174 | ||
def sparsity(model): | ||
# Return global model sparsity | ||
a, b = 0, 0 | ||
for p in model.parameters(): | ||
a += p.numel() | ||
b += (p == 0).sum() | ||
return b / a | ||
|
||
def prune(model, amount=0.3): | ||
# Prune model to requested global sparsity | ||
import torch.nn.utils.prune as prune | ||
print('Pruning model... ', end='') | ||
for name, m in model.named_modules(): | ||
if isinstance(m, nn.Conv2d): | ||
prune.l1_unstructured(m, name='weight', amount=amount) # prune | ||
prune.remove(m, 'weight') # make permanent | ||
print(' %.3g global sparsity' % sparsity(model)) | ||
|
||
net = net.to(device) | ||
if device == 'cuda': | ||
net = torch.nn.DataParallel(net) | ||
cudnn.benchmark = True | ||
|
||
if args.resume: | ||
# Load checkpoint. | ||
print('==> Resuming from checkpoint..') | ||
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' | ||
checkpoint = torch.load('./checkpoint/{}_ckpt.pth'.format(args.net)) | ||
net.load_state_dict(checkpoint['net']) | ||
best_acc = checkpoint['acc'] | ||
start_epoch = checkpoint['epoch'] | ||
|
||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.SGD(net.parameters(), lr=args.lr, | ||
momentum=0.9, weight_decay=5e-4) | ||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200) | ||
|
||
|
||
# Training | ||
def train(epoch): | ||
print('\nEpoch: %d' % epoch) | ||
net.train() | ||
train_loss = 0 | ||
correct = 0 | ||
total = 0 | ||
for batch_idx, (inputs, targets) in enumerate(trainloader): | ||
inputs, targets = inputs.to(device), targets.to(device) | ||
optimizer.zero_grad() | ||
outputs = net(inputs) | ||
loss = criterion(outputs, targets) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
train_loss += loss.item() | ||
_, predicted = outputs.max(1) | ||
total += targets.size(0) | ||
correct += predicted.eq(targets).sum().item() | ||
|
||
|
||
def test(epoch): | ||
global best_acc | ||
if args.prune: | ||
prune(net, args.pruning_rate) | ||
|
||
net.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
total = 0 | ||
with torch.no_grad(): | ||
for batch_idx, (inputs, targets) in enumerate(testloader): | ||
inputs, targets = inputs.to(device), targets.to(device) | ||
outputs = net(inputs) | ||
loss = criterion(outputs, targets) | ||
|
||
test_loss += loss.item() | ||
_, predicted = outputs.max(1) | ||
total += targets.size(0) | ||
correct += predicted.eq(targets).sum().item() | ||
|
||
|
||
# Save checkpoint. | ||
acc = 100.*correct/total | ||
if acc > best_acc: | ||
print('Saving..') | ||
state = { | ||
'net': net.state_dict(), | ||
'acc': acc, | ||
'epoch': epoch, | ||
} | ||
if not os.path.isdir('checkpoint'): | ||
os.mkdir('checkpoint') | ||
torch.save(state, './checkpoint/{}_ckpt.pth'.format(args.net)) | ||
best_acc = acc | ||
|
||
|
||
for epoch in range(args.epochs): | ||
if args.train: train(epoch) | ||
if args.test: | ||
test(epoch) | ||
if not args.train: break | ||
scheduler.step() | ||
|