Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PyTorch mnist example #1237

Merged
merged 1 commit into from
Jan 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions examples/pytorch/mnist/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
#
# Copyright 2024 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

ARG PYTORCH_IMAGE=pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

FROM ${PYTORCH_IMAGE}

COPY requirements.txt .

RUN set -eux && \
pip install -r requirements.txt && \
rm requirements.txt
287 changes: 287 additions & 0 deletions examples/pytorch/mnist/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
#
# Copyright 2024 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import os

import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output


def train(args, model, device, train_loader, optimizer, epoch, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
niter = epoch * len(train_loader) + batch_idx
writer.add_scalar('loss', loss.item(), niter)
if args.dry_run:
break


def test(model, device, test_loader, epoch, writer):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction="sum").item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
accuracy = float(correct) / len(test_loader.dataset)
print(
"\nAccuracy: {}/{} ({:.2f}%)\n".format(
correct,
len(test_loader.dataset),
accuracy * 100.0,
)
)
writer.add_scalar('accuracy', accuracy, epoch)


def print_env():
info = {
"PID": os.getpid(),
"MASTER_ADDR": os.environ["MASTER_ADDR"],
"MASTER_PORT": os.environ["MASTER_PORT"],
"LOCAL_RANK": int(os.environ["LOCAL_RANK"]),
"RANK": int(os.environ["RANK"]),
"GROUP_RANK": int(os.environ["GROUP_RANK"]),
"ROLE_RANK": int(os.environ["ROLE_RANK"]),
"LOCAL_WORLD_SIZE": int(os.environ["LOCAL_WORLD_SIZE"]),
"WORLD_SIZE": int(os.environ["WORLD_SIZE"]),
"ROLE_WORLD_SIZE": int(os.environ["ROLE_WORLD_SIZE"]),
}
print(info)


def main():
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--data",
default="../data",
metavar="D",
help="directory where summary logs are stored",
)
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
metavar="N",
help="input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr",
type=float,
default=1.0,
metavar="LR",
help="learning rate (default: 1.0)",
)
parser.add_argument(
"--gamma",
type=float,
default=0.7,
metavar="M",
help="Learning rate step gamma (default: 0.7)",
)
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--dry-run",
action="store_true",
default=False,
help="quickly check a single pass",
)
parser.add_argument(
"--seed",
type=int,
default=1,
metavar="S",
help="random seed (default: 1)"
)
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--save-model",
action="store_true",
default=False,
help="For Saving the current Model",
)
parser.add_argument(
'--dir',
default=os.path.join(os.path.dirname(__file__), 'logs'),
metavar='L',
help='directory where summary logs are stored'
)
if dist.is_available():
parser.add_argument(
"--backend",
type=str,
default=dist.Backend.NCCL,
choices=[
dist.Backend.NCCL,
dist.Backend.GLOO,
dist.Backend.MPI
],
help="Distributed backend",
)
args = parser.parse_args()
print_env()

torch.manual_seed(args.seed)
use_cuda = not args.no_cuda and torch.cuda.is_available()

train_kwargs = {"batch_size": args.batch_size}
test_kwargs = {"batch_size": args.test_batch_size}
if use_cuda:
cuda_kwargs = {
"num_workers": 1,
"pin_memory": True,
"shuffle": True
}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(
args.data,
train=True,
download=True,
transform=transform
)
test_dataset = datasets.MNIST(
args.data,
train=False,
transform=transform
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
**train_kwargs
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
**test_kwargs
)

if use_cuda:
device_id = int(os.environ["LOCAL_RANK"])
print(f"Using cuda:{device_id}.")
device = torch.device(f"cuda:{device_id}")
else:
print("Using cpu")
device = torch.device("cpu")
model = Net().to(device)

world_size = int(os.environ["WORLD_SIZE"])
is_distributed = dist.is_available() and world_size > 1
if is_distributed:
dist.init_process_group(args.backend)
model = nn.parallel.DistributedDataParallel(model)

optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

writer = SummaryWriter(args.dir)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, writer)
test(model, device, test_loader, epoch, writer)
scheduler.step()

if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")

if is_distributed:
dist.destroy_process_group()


if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions examples/pytorch/mnist/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
tensorboard~=2.18.0
Loading