-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test patch #816 ![pic](https://github.com/lastmile-ai/aiconfig/assets/148090348/d5cc26b3-6cb7-4331-af8a-92fd8c4e2471) python extensions/HuggingFace/python/src/aiconfig_extension_hugging_face/local_inference/run_hf_example.py extensions/HuggingFace/python/src/aiconfig_extension_hugging_face/local_inference/hf_local_example.aiconfig.json -> "red fox in the woods"
- Loading branch information
1 parent
53fbb69
commit 65180f4
Showing
2 changed files
with
172 additions
and
4 deletions.
There are no files selected for viewing
9 changes: 5 additions & 4 deletions
9
extensions/HuggingFace/python/src/aiconfig_extension_hugging_face/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,19 +1,20 @@ | ||
from .local_inference.image_2_text import HuggingFaceImage2TextTransformer | ||
from .local_inference.text_2_image import HuggingFaceText2ImageDiffusor | ||
from .local_inference.text_2_speech import HuggingFaceText2SpeechTransformer | ||
from .local_inference.text_generation import HuggingFaceTextGenerationTransformer | ||
from .remote_inference_client.text_generation import HuggingFaceTextGenerationParser | ||
from .local_inference.text_summarization import HuggingFaceTextSummarizationTransformer | ||
from .local_inference.text_translation import HuggingFaceTextTranslationTransformer | ||
from .local_inference.text_2_speech import HuggingFaceText2SpeechTransformer | ||
|
||
from .remote_inference_client.text_generation import HuggingFaceTextGenerationParser | ||
|
||
# from .remote_inference_client.text_generation import HuggingFaceTextGenerationClient | ||
|
||
LOCAL_INFERENCE_CLASSES = [ | ||
"HuggingFaceText2ImageDiffusor", | ||
"HuggingFaceTextGenerationTransformer", | ||
"HuggingFaceTextSummarizationTransformer", | ||
"HuggingFaceTextTranslationTransformer", | ||
"HuggingFaceText2SpeechTransformer", | ||
"HuggingFaceAutomaticSpeechRecognition", | ||
"HuggingFaceImage2TextTransformer", | ||
] | ||
REMOTE_INFERENCE_CLASSES = ["HuggingFaceTextGenerationParser"] | ||
__ALL__ = LOCAL_INFERENCE_CLASSES + REMOTE_INFERENCE_CLASSES |
167 changes: 167 additions & 0 deletions
167
...ns/HuggingFace/python/src/aiconfig_extension_hugging_face/local_inference/image_2_text.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
from typing import Any, Dict, Optional, List, TYPE_CHECKING | ||
from aiconfig import ParameterizedModelParser, InferenceOptions | ||
from aiconfig.callback import CallbackEvent | ||
import torch | ||
from aiconfig.schema import Prompt, Output, ExecuteResult, Attachment | ||
|
||
from transformers import pipeline, Pipeline | ||
|
||
if TYPE_CHECKING: | ||
from aiconfig import AIConfigRuntime | ||
|
||
|
||
class HuggingFaceImage2TextTransformer(ParameterizedModelParser): | ||
def __init__(self): | ||
""" | ||
Returns: | ||
HuggingFaceImage2TextTransformer | ||
Usage: | ||
1. Create a new model parser object with the model ID of the model to use. | ||
parser = HuggingFaceImage2TextTransformer() | ||
2. Add the model parser to the registry. | ||
config.register_model_parser(parser) | ||
""" | ||
super().__init__() | ||
self.pipelines: dict[str, Pipeline] = {} | ||
|
||
def id(self) -> str: | ||
""" | ||
Returns an identifier for the Model Parser | ||
""" | ||
return "HuggingFaceImage2TextTransformer" | ||
|
||
async def serialize( | ||
self, | ||
prompt_name: str, | ||
data: Any, | ||
ai_config: "AIConfigRuntime", | ||
parameters: Optional[Dict[str, Any]] = None, | ||
) -> List[Prompt]: | ||
""" | ||
Defines how a prompt and model inference settings get serialized in the .aiconfig. | ||
Assume input in the form of input(s) being passed into an already constructed pipeline. | ||
Args: | ||
prompt (str): The prompt to be serialized. | ||
data (Any): Model-specific inference settings to be serialized. | ||
ai_config (AIConfigRuntime): The AIConfig Runtime. | ||
parameters (Dict[str, Any], optional): Model-specific parameters. Defaults to None. | ||
Returns: | ||
str: Serialized representation of the prompt and inference settings. | ||
""" | ||
await ai_config.callback_manager.run_callbacks( | ||
CallbackEvent( | ||
"on_serialize_start", | ||
__name__, | ||
{ | ||
"prompt_name": prompt_name, | ||
"data": data, | ||
"parameters": parameters, | ||
}, | ||
) | ||
) | ||
|
||
prompts = [] | ||
|
||
if not isinstance(data, dict): | ||
raise ValueError("Invalid data type. Expected dict when serializing prompt data to aiconfig.") | ||
if data.get("inputs", None) is None: | ||
raise ValueError("Invalid data when serializing prompt to aiconfig. Input data must contain an inputs field.") | ||
|
||
prompt = Prompt( | ||
**{ | ||
"name": prompt_name, | ||
"input": {"attachments": [{"data": data["inputs"]}]}, | ||
"metadata": None, | ||
"outputs": None, | ||
} | ||
) | ||
|
||
prompts.append(prompt) | ||
|
||
await ai_config.callback_manager.run_callbacks(CallbackEvent("on_serialize_complete", __name__, {"result": prompts})) | ||
return prompts | ||
|
||
async def deserialize( | ||
self, | ||
prompt: Prompt, | ||
aiconfig: "AIConfigRuntime", | ||
params: Optional[Dict[str, Any]] = {}, | ||
) -> Dict[str, Any]: | ||
await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_deserialize_start", __name__, {"prompt": prompt, "params": params})) | ||
|
||
# Build Completion data | ||
completion_params = self.get_model_settings(prompt, aiconfig) | ||
|
||
inputs = validate_and_retrieve_image_from_attachments(prompt) | ||
|
||
completion_params["inputs"] = inputs | ||
|
||
await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_deserialize_complete", __name__, {"output": completion_params})) | ||
return completion_params | ||
|
||
async def run_inference(self, prompt: Prompt, aiconfig: "AIConfigRuntime", options: InferenceOptions, parameters: Dict[str, Any]) -> list[Output]: | ||
await aiconfig.callback_manager.run_callbacks( | ||
CallbackEvent( | ||
"on_run_start", | ||
__name__, | ||
{"prompt": prompt, "options": options, "parameters": parameters}, | ||
) | ||
) | ||
model_name = aiconfig.get_model_name(prompt) | ||
|
||
self.pipelines[model_name] = pipeline(task="image-to-text", model=model_name) | ||
|
||
captioner = self.pipelines[model_name] | ||
completion_data = await self.deserialize(prompt, aiconfig, parameters) | ||
print(f"{completion_data=}") | ||
inputs = completion_data.pop("inputs") | ||
model = completion_data.pop("model") | ||
response = captioner(inputs, **completion_data) | ||
|
||
output = ExecuteResult(output_type="execute_result", data=response, metadata={}) | ||
|
||
prompt.outputs = [output] | ||
await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_run_complete", __name__, {"result": prompt.outputs})) | ||
return prompt.outputs | ||
|
||
def get_output_text(self, response: dict[str, Any]) -> str: | ||
raise NotImplementedError("get_output_text is not implemented for HuggingFaceImage2TextTransformer") | ||
|
||
|
||
def validate_attachment_type_is_image(attachment: Attachment): | ||
if not hasattr(attachment, "mime_type"): | ||
raise ValueError(f"Attachment has no mime type. Specify the image mimetype in the aiconfig") | ||
|
||
if not attachment.mime_type.startswith("image/"): | ||
raise ValueError(f"Invalid attachment mimetype {attachment.mime_type}. Expected image mimetype.") | ||
|
||
|
||
def validate_and_retrieve_image_from_attachments(prompt: Prompt) -> list[str]: | ||
""" | ||
Retrieves the image uri's from each attachment in the prompt input. | ||
Throws an exception if | ||
- attachment is not image | ||
- attachment data is not a uri | ||
- no attachments are found | ||
- operation fails for any reason | ||
""" | ||
|
||
if not hasattr(prompt.input, "attachments") or len(prompt.input.attachments) == 0: | ||
raise ValueError(f"No attachments found in input for prompt {prompt.name}. Please add an image attachment to the prompt input.") | ||
|
||
image_uris: list[str] = [] | ||
|
||
for i, attachment in enumerate(prompt.input.attachments): | ||
validate_attachment_type_is_image(attachment) | ||
|
||
if not isinstance(attachment.data, str): | ||
# See todo above, but for now only support uri's | ||
raise ValueError(f"Attachment #{i} data is not a uri. Please specify a uri for the image attachment in prompt {prompt.name}.") | ||
|
||
image_uris.append(attachment.data) | ||
|
||
return image_uris |