Skip to content

Commit

Permalink
doc: fix several typos (#21315)
Browse files Browse the repository at this point in the history
Fix several typos in the documentation that I myself introduced yesterday :-( I apologize for causing this extra work.
  • Loading branch information
kebekus committed Feb 1, 2025
1 parent 19755f8 commit 81a72b9
Showing 1 changed file with 6 additions and 5 deletions.
11 changes: 6 additions & 5 deletions Mathlib/Analysis/SpecialFunctions/Log/PosLog.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,9 @@ import Mathlib.Analysis.SpecialFunctions.Log.Basic
/-!
# The Positive Part of the Logarithm
This file defines the function `Real.posLog = r ↦ max 0 (log r)`, introduces the notation `log⁺,
For a finite length-`n` sequence `f i` of reals, it establishes the following standard estimates.
This file defines the function `Real.posLog = r ↦ max 0 (log r)` and introduces the notation
`log⁺`. For a finite length-`n` sequence `f i` of reals, it establishes the following standard
estimates.
- `theorem posLog_prod : log⁺ (∏ i, f i) ≤ ∑ i, log⁺ (f i)`
Expand All @@ -25,7 +26,7 @@ namespace Real
/-- Definition: the positive part of the logarithm. -/
noncomputable def posLog : ℝ → ℝ := fun r ↦ max 0 (log r)

/-- Notation `log⁺` for the real part of the logarithm. -/
/-- Notation `log⁺` for the positive part of the logarithm. -/
scoped notation "log⁺" => posLog

/-- Definition of the positive part of the logarithm, formulated as a theorem. -/
Expand Down Expand Up @@ -63,7 +64,7 @@ theorem posLog_eq_zero_iff (x : ℝ) : log⁺ x = 0 ↔ |x| ≤ 1 := by
rw [← posLog_abs, ← log_nonpos_iff (abs_nonneg x)]
simp [posLog]

/-- The function `log⁺` equals `log` outside of in the interval (-1,1). -/
/-- The function `log⁺` equals `log` outside of the interval (-1,1). -/
theorem posLog_eq_log {x : ℝ} (hx : 1 ≤ |x|) : log⁺ x = log x := by
simp only [posLog, sup_eq_right]
rw [← log_abs]
Expand All @@ -75,7 +76,7 @@ theorem log_of_nat_eq_posLog {n : ℕ} : log⁺ n = log n := by
· simp [hn, posLog]
· simp [posLog_eq_log, Nat.one_le_iff_ne_zero.2 hn]

/-- The function `log⁺` is monotone in the positive axis. -/
/-- The function `log⁺` is monotone on the positive axis. -/
theorem monotoneOn_posLog : MonotoneOn log⁺ (Set.Ici 0) := by
intro x hx y hy hxy
simp only [posLog, le_sup_iff, sup_le_iff, le_refl, true_and]
Expand Down

0 comments on commit 81a72b9

Please sign in to comment.