Skip to content

Commit

Permalink
chore: cleanup grind tests
Browse files Browse the repository at this point in the history
  • Loading branch information
leodemoura committed Jan 30, 2025
1 parent 2fedd71 commit 82ec6bf
Show file tree
Hide file tree
Showing 4 changed files with 23 additions and 49 deletions.
6 changes: 3 additions & 3 deletions tests/lean/run/grind_cat.lean
Original file line number Diff line number Diff line change
Expand Up @@ -227,13 +227,13 @@ theorem vcomp_eq_comp (α : F ⟶ G) (β : G ⟶ H) : NatTrans.vcomp α β = α

theorem vcomp_app' (α : F ⟶ G) (β : G ⟶ H) (X : C) : (α ≫ β).app X = α.app X ≫ β.app X := rfl

theorem congr_app {α β : F ⟶ G} (h : α = β) (X : C) : α.app X = β.app X := by rw [h]
theorem congr_app {α β : F ⟶ G} (h : α = β) (X : C) : α.app X = β.app X := by grind

theorem naturality_app_app {F G : C ⥤ D ⥤ E ⥤ E'}
(α : F ⟶ G) {X₁ Y₁ : C} (f : X₁ ⟶ Y₁) (X₂ : D) (X₃ : E) :
((F.map f).app X₂).app X₃ ≫ ((α.app Y₁).app X₂).app X₃ =
((α.app X₁).app X₂).app X₃ ≫ ((G.map f).app X₂).app X₃ :=
congr_app (NatTrans.naturality_app α X₂ f) X₃
((α.app X₁).app X₂).app X₃ ≫ ((G.map f).app X₂).app X₃ := by
grind

end NatTrans

Expand Down
56 changes: 14 additions & 42 deletions tests/lean/run/grind_cat2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,18 @@ universe v v₁ v₂ v₃ u u₁ u₂ u₃

namespace CategoryTheory

macro "cat_tac" : tactic => `(tactic| (intros; (try ext); grind))

class Category (obj : Type u) : Type max u (v + 1) where
Hom : obj → obj → Type v
/-- The identity morphism on an object. -/
id : ∀ X : obj, Hom X X
/-- Composition of morphisms in a category, written `f ≫ g`. -/
comp : ∀ {X Y Z : obj}, (Hom X Y) → (Hom Y Z) → (Hom X Z)
/-- Identity morphisms are left identities for composition. -/
id_comp : ∀ {X Y : obj} (f : Hom X Y), comp (id X) f = f := by cat_tac
id_comp : ∀ {X Y : obj} (f : Hom X Y), comp (id X) f = f := by grind
/-- Identity morphisms are right identities for composition. -/
comp_id : ∀ {X Y : obj} (f : Hom X Y), comp f (id Y) = f := by cat_tac
comp_id : ∀ {X Y : obj} (f : Hom X Y), comp f (id Y) = f := by grind
/-- Composition in a category is associative. -/
assoc : ∀ {W X Y Z : obj} (f : Hom W X) (g : Hom X Y) (h : Hom Y Z), comp (comp f g) h = comp f (comp g h) := by cat_tac
assoc : ∀ {W X Y Z : obj} (f : Hom W X) (g : Hom X Y) (h : Hom Y Z), comp (comp f g) h = comp f (comp g h) := by grind

infixr:10 "" => Category.Hom
scoped notation "𝟙" => Category.id -- type as \b1
Expand All @@ -33,9 +31,9 @@ structure Functor (C : Type u₁) [Category.{v₁} C] (D : Type u₂) [Category.
/-- The action of a functor on morphisms. -/
map : ∀ {X Y : C}, (X ⟶ Y) → ((obj X) ⟶ (obj Y))
/-- A functor preserves identity morphisms. -/
map_id : ∀ X : C, map (𝟙 X) = 𝟙 (obj X) := by cat_tac
map_id : ∀ X : C, map (𝟙 X) = 𝟙 (obj X) := by grind
/-- A functor preserves composition. -/
map_comp : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map (f ≫ g) = (map f) ≫ (map g) := by cat_tac
map_comp : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map (f ≫ g) = (map f) ≫ (map g) := by grind

infixr:26 "" => Functor

Expand Down Expand Up @@ -68,7 +66,7 @@ structure NatTrans [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (F G : Fu
/-- The component of a natural transformation. -/
app : ∀ X : C, F.obj X ⟶ G.obj X
/-- The naturality square for a given morphism. -/
naturality : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), F.map f ≫ app Y = app X ≫ G.map f := by cat_tac
naturality : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), F.map f ≫ app Y = app X ≫ G.map f := by grind

attribute [simp, grind =] NatTrans.naturality

Expand Down Expand Up @@ -110,11 +108,11 @@ theorem comp_app {F G H : Functor C D} (α : F ⟶ G) (β : G ⟶ H) (X : C) :

theorem app_naturality {F G : Functor C (Functor D E)} (T : F ⟶ G) (X : C) {Y Z : D} (f : Y ⟶ Z) :
(F.obj X).map f ≫ (T.app X).app Z = (T.app X).app Y ≫ (G.obj X).map f := by
cat_tac
grind

theorem naturality_app {F G : Functor C (Functor D E)} (T : F ⟶ G) (Z : D) {X Y : C} (f : X ⟶ Y) :
(F.map f).app Z ≫ (T.app Y).app Z = (T.app X).app Z ≫ (G.map f).app Z := by
cat_tac -- this is done manually in Mathlib!
grind -- this is done manually in Mathlib!
-- rw [← comp_app]
-- rw [T.naturality f]
-- rw [comp_app]
Expand All @@ -127,13 +125,11 @@ def hcomp {H I : Functor D E} (α : F ⟶ G) (β : H ⟶ I) : F.comp H ⟶ G.com
-- rw [Functor.comp_map, Functor.comp_map, ← assoc, naturality, assoc, ← I.map_comp, naturality,
-- map_comp, assoc]



structure Iso {C : Type u} [Category.{v} C] (X Y : C) where
hom : X ⟶ Y
inv : Y ⟶ X
hom_inv_id : hom ≫ inv = 𝟙 X := by cat_tac
inv_hom_id : inv ≫ hom = 𝟙 Y := by cat_tac
hom_inv_id : hom ≫ inv = 𝟙 X := by grind
inv_hom_id : inv ≫ hom = 𝟙 Y := by grind

attribute [grind =] Iso.hom_inv_id Iso.inv_hom_id

Expand All @@ -146,12 +142,7 @@ namespace Iso

@[ext]
theorem ext ⦃α β : X ≅ Y⦄ (w : α.hom = β.hom) : α = β :=
suffices α.inv = β.inv by
cases α
cases β
cases w
cases this
rfl
suffices α.inv = β.inv by grind [Iso]
calc
α.inv = α.inv ≫ β.hom ≫ β.inv := by grind
_ = β.inv := by grind
Expand Down Expand Up @@ -182,7 +173,7 @@ attribute [local grind] Function.LeftInverse in
def homToEquiv (α : X ≅ Y) {Z : C} : (Z ⟶ X) ≃ (Z ⟶ Y) where
toFun f := f ≫ α.hom
invFun g := g ≫ α.inv
left_inv := by cat_tac
left_inv := by grind
right_inv := sorry

end Iso
Expand All @@ -197,10 +188,10 @@ class Functorial (F : C → D) : Type max v₁ v₂ u₁ u₂ where
/-- A functorial map extends to an action on morphisms. -/
map' : ∀ {X Y : C}, (X ⟶ Y) → (F X ⟶ F Y)
/-- A functorial map preserves identities. -/
map_id' : ∀ X : C, map' (𝟙 X) = 𝟙 (F X) := by cat_tac
map_id' : ∀ X : C, map' (𝟙 X) = 𝟙 (F X) := by grind
/-- A functorial map preserves composition of morphisms. -/
map_comp' : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map' (f ≫ g) = map' f ≫ map' g := by
cat_tac
grind

def map (F : C → D) [Functorial.{v₁, v₂} F] {X Y : C} (f : X ⟶ Y) : F X ⟶ F Y :=
Functorial.map'.{v₁, v₂} f
Expand Down Expand Up @@ -253,23 +244,4 @@ def functorial_comp (F : C → D) [Functorial.{v₁, v₂} F] (G : D → E) [Fun
}
end Ex1

namespace Ex2
variable {E : Type u₃} [Category.{v₃} E]

/-
In this example, we restrict the number of heartbeats used by the canonicalizer.
The idea is to test the issue tracker.
-/

def functorial_comp' (F : C → D) [Functorial.{v₁, v₂} F] (G : D → E) [Functorial.{v₂, v₃} G] :
Functorial.{v₁, v₃} (G ∘ F) :=
{ Functor.of F ⋙ Functor.of G with
map' := fun f => map G (map F f)
map_id' := sorry
map_comp' := by grind (canonHeartbeats := 1)
}

end Ex2


end CategoryTheory
7 changes: 5 additions & 2 deletions tests/lean/run/grind_list.lean
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
%reset_grind_attrs

namespace List

attribute [local grind =] List.length_cons in
Expand All @@ -20,8 +22,9 @@ attribute [local grind =] Option.map_some' Option.map_none' in
attribute [local grind =] getElem?_map in
attribute [local grind =] getElem?_replicate in
theorem map_replicate' : (replicate n a).map f = replicate n (f a) := by
ext i
grind
grind?

#print map_replicate'

attribute [local grind =] getLast?_eq_some_iff in
attribute [local grind] mem_concat_self in
Expand Down
3 changes: 1 addition & 2 deletions tests/lean/run/grind_match2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,7 @@ info: [grind] closed `grind.1`
#guard_msgs (info) in
set_option trace.grind true in
example : h as ≠ 0 := by
unfold h
grind
grind [h.eq_def]

example : h as ≠ 0 := by
unfold h
Expand Down

0 comments on commit 82ec6bf

Please sign in to comment.