Skip to content

Commit

Permalink
Added .tex files
Browse files Browse the repository at this point in the history
  • Loading branch information
liunelson authored Aug 29, 2019
1 parent 6db399b commit db53e61
Show file tree
Hide file tree
Showing 23 changed files with 19,114 additions and 0 deletions.
64 changes: 64 additions & 0 deletions appendix_CFT.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@

\chapter{Crystal Field Splitting Energy}
\label{ap: cft}

Table~\ref{tab: cft-full} lists representative values of
the crystal field splitting energy~$\Delta_\text{oct}$
for octahedral complexes of the form $\mathrm{[ML_6]}^{n+}$
for monodentate ligands L and $\mathrm{[ML_3]}^{n+}$ for bidentate ones.
The ligands are sorted according to the spectrochemical series,
in increasing order of ligand field strength~\cite{Ryutaro1938a, Ryutaro1938b, FiggisBook}.
%
\begin{table}[ht!]
\centering
{\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{ c c c c c c c c c c }
\toprule
\multirow{2}{*}{
\begin{minipage}[c]{1.75cm} \centering Electron System \end{minipage}
} & \multirow{2}{*}{Ion}
& \multicolumn{8}{c }{$\Delta_\text{oct}$ ($\times 10^3$~cm$^{-1}$)} \\
\cline{3-10}
& & Br$^-$ & Cl$^-$ & F$^-$ & ox$^{2-}$ & OH$_2$ & NH$_3$ & en & CN$^-$ \\
\midrule
d$^1$ & Ti$^{3+}$ & & 13 & 18.9 & & 20.1 & 17 & & 22 \\
& V$^{4+}$ & & 15 & 20.1 & & & & & \\
d$^2$ & V$^{3+}$ & & 12 & 16.1 & 18 & 20 & 18 & & 24 \\
d$^3$ & V$^{2+}$ & & 8 & & & 12.4 & & & \\
& Cr$^{3+}$ & 13 & 13 & 14.5 & 17.4 & 17 & 21.5 & 22 & 26 \\
& Mo$^{3+}$ & 14.5 & 19.2 & & & & & & \\
d$^4$ & Cr$^{2+}$ & & 10 & 14 & & 13 & & 18 & \\
& Mn$^{3+}$ & & 17.5 & 22 & 20 & 20 & & & 31 \\
d$^5$ & Mn$^{2+}$ & 7 & 7.5 & 7.8 & & 8.5 & & & 33 \\
& Fe$^{3+}$ & & & 14 & 14 & 14 & & & 35 \\
d$^6$ & Fe$^{2+}$ & & & 10 & & 10 & & & 32 \\
& Co$^{3+}$ & & & 13 & 18 & 20.8 & 22.9 & 23.2 & \\
& Ru$^{2+}$ & & & & & 19.8 & 28.1 & & \\
& Rh$^{2+}$ & 19 & 20.4 & & 26 & 27 & 34 & 35 & \\
& Ir$^{3+}$ & 23 & 25 & & & & 41 & 41 & \\
& Pt$^{4+}$ & 25 & 29 & 33 & & & & & \\
d$^7$ & Co$^{2+}$ & 6.5 & 7.65 & 8.3 & 11 & 9.3 & 10.2 & 11 & \\
d$^8$ & Ni$^{2+}$ & 6.8 & 7.2 & 7.25 & & 8.5 & 11.5 & 11.5 & \\
d$^9$ & Cu$^{2+}$ & & & & & 12 & 16 & 16 & \\
\bottomrule
\end{tabular}
}
\caption{Octahedral CFT splitting energy~$\Delta_\text{oct}$
of some transition-metal complexes of the form [ML\textsubscript{6}]\textsuperscript{n+}
for all monodentate ligands L. Ligands $\mathrm{L = ox^{2-}}$ and en are bidentate
and form complexes of the form $\mathrm{[ML_3]}^{n+}$.
Note that $\mathrm{ox^{2-} = (COO)_2^{2-}}$ is the oxalate dianion
and $\mathrm{en = C_2 H_4 (NH_2)_2}$ is ethylenediamine.
Data herein is taken from Ref.~\cite{FiggisBook}.
}
\label{tab: cft-full}
\end{table}

Note that values of $\Delta_\text{oct}$ also follow an increasing trend as a function
of the oxidation state and period number of the metal cation,
e.g. $\Delta_\text{oct}(\mathrm{Fe^{3+}}) < \Delta_\mathrm{o}(\mathrm{Fe^{2+}})$
and $\Delta_\mathrm{o}(\mathrm{Fe^{2+}}) < \Delta_\mathrm{o}(\mathrm{Ru^{2+}})$.
Both effects are consequences of $\Delta_\text{oct} \propto \frac{1}{r^5}$,
where $r$ is the metal--ligand interatomic distance;
a more highly charged metal cation pulls its ligands closer while
a larger one allows them to approach by lessening steric hindrance~\cite{FiggisBook}.
86 changes: 86 additions & 0 deletions appendix_MottBethe.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
\chapter{Derivation of the Mott-Bethe Formula}
\label{ap: MottBethe}

The Mott-Bethe formula is often used to convert in between
the X-ray scattering factor
%
\begin{equation}
f_\text{X}(\boldsymbol{q}) = \int n_\text{e}(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
\end{equation}
%
and the electron scattering factor
%
\begin{equation}
f_\text{e}(\boldsymbol{q}) = - \frac{m_\text{e}}{2 \unslant[-.2]\pi \hbar^2} \int U(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
\end{equation}
%
for the purpose of calculations.
However, the source of this handy relationship is rarely stated.
Thus, for the completeness of this thesis,
the derivation for this equation is described below,
as laid out in Ref.~\cite{LandauLifshitzBook}.

During a scattering event with an atom, X-rays interact mainly with
the electron number density $n_\text{e}(\boldsymbol{r})$
while electrons are deflected by the electrostatic potential $\phi(\boldsymbol{r})$
caused by the bound electrons and the nucleus.
%
A starting point to relate these two quantities is the Poisson Equation
and the total atomic charge density~$\rho(\boldsymbol{r})$,
%
\begin{equation}
\nabla^2 \phi(\boldsymbol{r}) = -\frac{\rho(\boldsymbol{r})}{\epsilon_0}
\end{equation}
%
in which their Fourier transforms are inserted,
%
\begin{equation}
\begin{aligned}
\nabla^2 \left( \int \phi_{\boldsymbol{q}} \mathrm{e}^{ \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r} } \mathrm{d}^3 q \right)
& = -\frac{1}{\epsilon_0} \left( \int \rho_{\boldsymbol{q}} \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 q \right) \\
\int \phi_{\boldsymbol{q}} \left( -q^2 \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \right) \mathrm{d}^3 q
& = -\frac{1}{\epsilon_0} \int \rho_{\boldsymbol{q}} \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 q \\
\phi_{\boldsymbol{q}} & = \frac{1}{\epsilon_0 q^2} \rho_{\boldsymbol{q}}
\end{aligned}
\end{equation}
%
Therefore,
%
\begin{equation}
\begin{aligned}
\int \phi(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
& = \frac{1}{\epsilon_0 q^2} \int \rho(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
\end{aligned}
\end{equation}
%
On the right side, $\rho(\boldsymbol{r})$ can be expanded into a point-like nuclear charge density
$\rho_\text{N}(\boldsymbol{r}) = Z e \delta^3(\boldsymbol{r})$ and an extended electronic charge density $\rho_\text{e}(\boldsymbol{r}) = e n_\text{e}(\boldsymbol{r})$,
%
\begin{equation}
\begin{aligned}
\frac{1}{\epsilon_0 q^2} \int \rho(\boldsymbol{r}) \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
& = \frac{1}{\epsilon_0 q^2} \int \left( Z e \delta^3(\boldsymbol{r}) - e n_\text{e}(\boldsymbol{r}) \right) \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r \\
& = \frac{e}{\epsilon_0 q^2} \left( Z - \int n_\text{e}(\boldsymbol{r}) \mathrm{e}^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r \right) \\
& = \frac{e}{\epsilon_0 q^2} \left( Z - f_\text{X}(\boldsymbol{q}) \right)
\end{aligned}
\end{equation}
%
where $Z$ is the atomic number of the atom and $n_\text{e}(\boldsymbol{r})$ is the number density of the bound electrons.
%
On the left side, recall that $U(\boldsymbol{r}) = -e \phi(\boldsymbol{r})$,
%
\begin{equation}
\begin{aligned}
\int \phi(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r
& = -\frac{1}{e} \int U(\boldsymbol{r}) \mathrm{e}^{ - \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}} \mathrm{d}^3 r \\
& = \frac{2 \unslant[-.2]\pi \hbar^2}{m_\text{e} e} f_\text{e}(\boldsymbol{q})
\end{aligned}
\end{equation}
%
By recombining the result from the left and right sides, the Mott-Bethe formula is thus recovered:
%
\begin{equation}
\begin{aligned}
f_\text{e}(\boldsymbol{q}) = \frac{m_\text{e} e^2}{2 \unslant[-.2]\pi \hbar^2 \epsilon_0 q^2} \left( Z - f_\text{X}(\boldsymbol{q}) \right)
\end{aligned}
\end{equation}
165 changes: 165 additions & 0 deletions appendix_SCO.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@

\chapter{Theory of Spin Crossover}
\label{ap: sco}

In Section~\ref{sec: SCO-theory}, the theory of thermal and photoinduced
spin crossover is discussed.
%
In particular, the non-adiabatic multiphonon relaxation model
by Buhks et al~\cite{Buhks1980} is mentioned in the context of
the LS$\leftarrow$HS relaxation following LIESST.
%
Here, this model is described in more detail for reference.

Following the lead of Hauser in Ref.~\cite{SCO-II},
consider Fermi's Golden Rule~\cite{Dirac1927, Fermi1950},
%
\begin{equation}
\begin{aligned}
w_{i \rightarrow f} & = \frac{2 \unslant[-.2]\pi}{\hbar} |V_{i f}|^2 \rho_f
\end{aligned}
\label{eq: fermi-golden}
\end{equation}
%
where $w_{i \rightarrow f}$ is the probability of transition from an initial state~$i$
(in the $m$-th vibrational level of the HS state)
to a final state~$f$ (in the $m^\prime$-th vibrational level of the LS state),
$|V_{i f}|^2$ is the matrix element of the perturbing potential
that couples states $i$ and $f$, and $\rho_f$ is the density of states at $f$.

Given that the perturbing potential is
the spin--orbit interaction~$\hat{H}_\text{SO} = \zeta \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$,
the coupling matrix element can be expanded as
%
\begin{equation}
\begin{aligned}
|V_{i f}|^2 & = |\langle \Psi_f | \hat{H}_\text{SO} | \Psi_i \rangle|^2 \\
& = |\langle \psi_\text{HS} | \hat{H}_\text{SO} | \psi_\text{LS} \rangle|^2
| \langle \chi_{m^\prime} | \chi_m \rangle |^2
\end{aligned}
\end{equation}
%
where $| \psi \rangle, | \chi \rangle $ are the electronic and vibrational parts
of the total wavefunction~$| \Psi \rangle$ and,
according to the Condon~approximation, $| \Psi_i \rangle = | \psi_\text{HS} \rangle | \chi_m \rangle$
and $| \Psi_f \rangle = | \psi_\text{LS} \rangle | \chi_{m^\prime} \rangle$.
%
To evaluate this quantity, consider that
the electronic states are mixed to some degree
due to the presence of the spin--orbit interaction~$\hat{H}_\text{SO}$
and thus need to be expressed using first-order perturbation theory,
%
\begin{equation}
\begin{aligned}
| \psi_\text{LS} \rangle
& \approx | \psi_\text{LS}^{(0)} \rangle
+ \sum_{j}
\frac{\langle \psi_j^{(0)} | \hat{H}_\text{SO} | \psi_\text{LS}^{(0)} \rangle}{E_\text{LS}^{(0)} - E_j^{(0)}} | \psi_j^{(0)} \rangle \\
\langle \psi_\text{HS} |
& \approx \langle \psi_\text{HS}^{(0)} |
+ \sum_{j}
\frac{\langle \psi_\text{HS}^{(0)} | \hat{H}_\text{SO} | \psi_j^{(0)} \rangle}{E_\text{HS}^{(0)} - E_j^{(0)}} \langle \psi_j^{(0)} |
\end{aligned}
\end{equation}
%
where the energy denominators are evaluated in
the equilibrium nuclear configuration of the respective states.
Then,
%
\begin{equation}
\begin{aligned}
\langle \psi_\text{HS} | \hat{H}_\text{SO} | \psi_\text{LS} \rangle
& = \langle \psi_\text{HS}^{(0)} | \hat{H}_\text{SO} | \psi_\text{LS}^{(0)} \rangle
+ \sum_{j} \langle \psi_\text{HS}^{(0)} | \hat{H}_\text{SO} | \psi_j^{(0)} \rangle
\langle \psi_j^{(0)} | \hat{H}_\text{SO} | \psi_\text{LS}^{(0)} \rangle \\
& \quad \left( \frac{1}{E_\text{LS}^{(0)} - E_j^{(0)}} + \frac{1}{E_\text{HS}^{(0)} - E_j^{(0)}} \right) \\
& = 0 + \langle \mathrm{^5T_{2g}} | \hat{H}_\text{SO} | \mathrm{^3T_{1g}} \rangle
\langle \mathrm{^3T_{1g}} | \hat{H}_\text{SO} | \mathrm{^1A_{1g}} \rangle
\left( \frac{1}{\Delta E_\text{LI}^{(0)}} + \frac{1}{\Delta E_\text{HI}^{(0)}} \right)
\end{aligned}
\end{equation}
%
where $\Delta E_\text{LI}^{(0)}, \Delta E_\text{HI}^{(0)}$ are the energy difference
between the triplet intermediate state $\mathrm{^3T_{1g}}$ and the other states.
From Ref.~\cite{Griffith1964}, $\mathrm{^3T_{1g}}$,
with electronic configuration $\mathrm{(t_{2g})^5 (e_g^*)^1}$,
is the only term which has non-vanishing spin--orbit matrix elements
with both $\mathrm{^1A_{1g}}$ and $\mathrm{^5T_{2g}}$,
%
\begin{equation}
\begin{aligned}
\langle \mathrm{^5T_{2g}} | \hat{H}_\text{SO} | \mathrm{^1A_{1g}} \rangle
& = 0 \\
\langle \mathrm{^5T_{2g}} | \hat{H}_\text{SO} | \mathrm{^3T_{1g}} \rangle
& = - \sqrt{6} \zeta \\
\langle \mathrm{^3T_{1g}} | \hat{H}_\text{SO} | \mathrm{^1A_{1g}} \rangle
& = \sqrt{3} \zeta
\end{aligned}
\end{equation}

Assume that the LS and HS potentials are identical and harmonic of
the same frequency~$\omega$, with the latter displaced energetically by $\Delta E_\text{HL}^{(0)}$ and
configurationally by $\Delta Q_\text{HL} = \sqrt{6} \Delta r_\text{HL}$
along a single internal vibrational coordinate~$Q$, namely the totally symmetric metal--ligand stretch mode.
Then, energy conservation requires simply $m^\prime = m + n$,
where $n = \frac{\Delta E_\text{HL}^{(0)}}{\hbar \omega}$ is the reduced energy gap between the LS and HS states,
and the density of states~$\rho_f$ becomes $\frac{g_f}{\hbar \omega}$,
where $g_f = 1$ is the degeneracy of the final electronic state.

To obtain the LS$\leftarrow$HS relaxation rate constant~$k_\text{HL}(T)$,
Eq.~\eqref{eq: fermi-golden} is combined with those above and
ensemble-averaged over all $m$,
%
\begin{equation}
\begin{aligned}
k_\text{HL}(T)
& = \frac{2 \unslant[-.2]\pi}{\hbar^2 \omega}
|\langle \psi_\text{HS} | \hat{H}_\text{SO} | \psi_\text{LS} \rangle|^2 \bar{F}_n(T)
\end{aligned}
\end{equation}
%
where $\bar{F}_n$ is the ensemble average of the Franck-Condon factor~$F_{m n}$,
%
\begin{equation}
\begin{aligned}
F_{m n}(T) & = | \langle \chi_{m + n} | \chi_m \rangle |^2 \\
\bar{F}_n(T)
& = \frac{\sum \limits_m F_{m n}(T) \mathrm{e}^{-m \hbar \omega / k_\text{B} T}}{\sum \limits_m \mathrm{e}^{-m \hbar \omega / k_\text{B} T}}
\end{aligned}
\end{equation}

% Sousa, de Graaf calculations
In a similar procedure, Sousa et~al~\cite{Sousa2013} have evaluate
more spin--orbit coupling matrix elements using high-level quantum-chemical methods.
%
Table~\ref{tab: sco-so} shows some of these computational results.
%
\begin{table}[ht!]
\centering
{\renewcommand*{\arraystretch}{1.5}
\begin{tabular}{| c | c | c c c c c c c c |}
\cline{3-10}
\multicolumn{2}{c|}{} & \multicolumn{8}{c |}{$\psi_f$} \\
\cline{3-10}
\multicolumn{2}{c|}{} & $\mathrm{^1 A_{1g}}$
& $\mathrm{^1 T_{1g}}$ & $\mathrm{^1 MLCT}$ & $\mathrm{^3 T_{1g}}$
& $\mathrm{^3 T_{2g}}$ & $\mathrm{^3 MLCT}$ & $\mathrm{^5 T_{2g}}$ & $\mathrm{^5 MLCT}$ \\
\hline
\multirow{8}{*}{$\psi_i$} & $\mathrm{^1 A_{1g}}$ & & & & 527.7 & 83.7 & 81.6 & 0 & 0 \\
& $\mathrm{^1 T_{1g}}$ & & & & 75.5 & 131.4 & 164.7 & 0 & 0 \\
& $\mathrm{^1 MLCT}$ & & & & 96.0 & 214.3 & 199.9 & 0 & 0 \\
& $\mathrm{^3 T_{1g}}$ & 527.7 & 75.5 & 96.0 & & & & 417.7 & \\
& $\mathrm{^3 T_{2}}$ & 83.7 & 131.4 & 214.3 & & & & 219.9 & \\
& $\mathrm{^3 MLCT}$ & 81.6 & 164.7 & 199.9 & & & & 6.2 & 344.3 \\
& $\mathrm{^5 T_{2g}}$ & 0 & 0 & 0 & 417.7 & 219.9 & 6.2 & & \\
& $\mathrm{^5 MLCT}$ & 0 & 0 & 0 & & & 344.3 & & \\
\hline
\end{tabular}
}
\caption{Select spin--orbit coupling matrix elements
$\langle \psi_f | \hat{H}_\text{SO} | \psi_i \rangle$
of $\mathrm{[Fe^{II}(bpy)_3]^{2+}}$ in the equilibrium nuclear configuration
of the $\mathrm{^1 A_{1g}}$ LS state, calculated at the CASSCF/CASPT2 level~\cite{Sousa2013}.
}
\label{tab: sco-so}
\end{table}
33 changes: 33 additions & 0 deletions appendix_SCO_BPY.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
% \chapter{SVD Analysis of $\mathrm{[Fe^{II}(bpy)_3](PF_6)_2}$ TA Data}
\chapter{SVD Analysis of [Fe\textsuperscript{II}(bpy)\textsubscript{3}](PF\textsubscript{6})\textsubscript{2} TA Data}
\label{ap: sco-bpy}

% Figure: aqueous SVD analysis
\begin{figure}[hp]
\centering
\includegraphics[width = \textwidth]{Figures/fig_BPY_data_aqueous_svd.pdf}
\caption[SVD analysis of solvated BPY TA data.]{
SVD analysis of solvated BPY TA data:
(a) UV short-time, (b) UV long-time, (c) Vis short-time, and (d) Vis long-time.
From left to right, the panels show
the principal wavelenght-dependent singular vectors~$u_i(\lambda)$,
the first 100 singular values~$s_i$,
and the principal time-dependent singular vectors~$v_i(t)$.
}
\label{fig: BPY-data-aqueous-svd}
\end{figure}

% Figure: aqueous SVD analysis
\begin{figure}[p]
\centering
\includegraphics[width = \textwidth]{Figures/fig_BPY_data_crystal_svd.pdf}
\caption[SVD analysis of single-crystal BPY TA data.]{
SVD analysis of single-crystal BPY TA data:
(a) UV short-time, (b) UV long-time, (c) Vis short-time, and (d) Vis long-time.
From left to right, the panels show
the principal wavelenght-dependent singular vectors~$u_i(\lambda)$,
the first 100 singular values~$s_i$,
and the principal time-dependent singular vectors~$v_i(t)$.
}
\label{fig: BPY-data-crystal-svd}
\end{figure}
Loading

0 comments on commit db53e61

Please sign in to comment.