-
Notifications
You must be signed in to change notification settings - Fork 624
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c2c3345
commit 69c6ab4
Showing
12 changed files
with
1,077 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
283 changes: 283 additions & 0 deletions
283
...egression/07-Linear-Regression-in-scikit-learn/07-Linear-Regression-in-scikit-learn.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,283 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## scikit-learn 中的 Linear Regression" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from sklearn import datasets" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"boston = datasets.load_boston()\n", | ||
"\n", | ||
"X = boston.data\n", | ||
"y = boston.target\n", | ||
"\n", | ||
"X = X[y < 50.0]\n", | ||
"y = y[y < 50.0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(490, 13)" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from playML.model_selection import train_test_split\n", | ||
"\n", | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 使用我们自己制作 Linear Regression\n", | ||
"\n", | ||
"代码参见 [这里](playML/LinearRegression.py)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"LinearRegression()" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from playML.LinearRegression import LinearRegression\n", | ||
"\n", | ||
"reg = LinearRegression()\n", | ||
"reg.fit_normal(X_train, y_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([ -1.18919477e-01, 3.63991462e-02, -3.56494193e-02,\n", | ||
" 5.66737830e-02, -1.16195486e+01, 3.42022185e+00,\n", | ||
" -2.31470282e-02, -1.19509560e+00, 2.59339091e-01,\n", | ||
" -1.40112724e-02, -8.36521175e-01, 7.92283639e-03,\n", | ||
" -3.81966137e-01])" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"reg.coef_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"34.161435496224712" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"reg.intercept_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.81298026026584658" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"reg.score(X_test, y_test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### scikit-learn中的线性回归" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from sklearn.linear_model import LinearRegression\n", | ||
"\n", | ||
"sk_reg = LinearRegression()\n", | ||
"sk_reg.fit(X_train, y_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([ -1.18919477e-01, 3.63991462e-02, -3.56494193e-02,\n", | ||
" 5.66737830e-02, -1.16195486e+01, 3.42022185e+00,\n", | ||
" -2.31470282e-02, -1.19509560e+00, 2.59339091e-01,\n", | ||
" -1.40112724e-02, -8.36521175e-01, 7.92283639e-03,\n", | ||
" -3.81966137e-01])" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sk_reg.coef_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"34.161435496246924" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sk_reg.intercept_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.81298026026584758" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"sk_reg.score(X_test, y_test)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
43 changes: 43 additions & 0 deletions
43
05-Linear-Regression/07-Linear-Regression-in-scikit-learn/playML/LinearRegression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import numpy as np | ||
from .metrics import r2_score | ||
|
||
|
||
class LinearRegression: | ||
|
||
def __init__(self): | ||
"""初始化Linear Regression模型""" | ||
self.coef_ = None | ||
self.intercept_ = None | ||
self._theta = None | ||
|
||
def fit_normal(self, X_train, y_train): | ||
"""根据训练数据集X_train, y_train训练Linear Regression模型""" | ||
assert X_train.shape[0] == y_train.shape[0], \ | ||
"the size of X_train must be equal to the size of y_train" | ||
|
||
X_b = np.hstack([np.ones((len(X_train), 1)), X_train]) | ||
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train) | ||
|
||
self.intercept_ = self._theta[0] | ||
self.coef_ = self._theta[1:] | ||
|
||
return self | ||
|
||
def predict(self, X_predict): | ||
"""给定待预测数据集X_predict,返回表示X_predict的结果向量""" | ||
assert self.intercept_ is not None and self.coef_ is not None, \ | ||
"must fit before predict!" | ||
assert X_predict.shape[1] == len(self.coef_), \ | ||
"the feature number of X_predict must be equal to X_train" | ||
|
||
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict]) | ||
return X_b.dot(self._theta) | ||
|
||
def score(self, X_test, y_test): | ||
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度""" | ||
|
||
y_predict = self.predict(X_test) | ||
return r2_score(y_test, y_predict) | ||
|
||
def __repr__(self): | ||
return "LinearRegression()" |
47 changes: 47 additions & 0 deletions
47
05-Linear-Regression/07-Linear-Regression-in-scikit-learn/playML/SimpleLinearRegression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import numpy as np | ||
from .metrics import r2_score | ||
|
||
|
||
class SimpleLinearRegression: | ||
|
||
def __init__(self): | ||
"""初始化Simple Linear Regression模型""" | ||
self.a_ = None | ||
self.b_ = None | ||
|
||
def fit(self, x_train, y_train): | ||
"""根据训练数据集x_train, y_train训练Simple Linear Regression模型""" | ||
assert x_train.ndim == 1, \ | ||
"Simple Linear Regressor can only solve single feature training data." | ||
assert len(x_train) == len(y_train), \ | ||
"the size of x_train must be equal to the size of y_train" | ||
|
||
x_mean = np.mean(x_train) | ||
y_mean = np.mean(y_train) | ||
|
||
self.a_ = (x_train - x_mean).dot(y_train - y_mean) / (x_train - x_mean).dot(x_train - x_mean) | ||
self.b_ = y_mean - self.a_ * x_mean | ||
|
||
return self | ||
|
||
def predict(self, x_predict): | ||
"""给定待预测数据集x_predict,返回表示x_predict的结果向量""" | ||
assert x_predict.ndim == 1, \ | ||
"Simple Linear Regressor can only solve single feature training data." | ||
assert self.a_ is not None and self.b_ is not None, \ | ||
"must fit before predict!" | ||
|
||
return np.array([self._predict(x) for x in x_predict]) | ||
|
||
def _predict(self, x_single): | ||
"""给定单个待预测数据x,返回x的预测结果值""" | ||
return self.a_ * x_single + self.b_ | ||
|
||
def score(self, X_test, y_test): | ||
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度""" | ||
|
||
y_predict = self.predict(X_test) | ||
return r2_score(y_test, y_predict) | ||
|
||
def __repr__(self): | ||
return "SimpleLinearRegression()" |
Empty file.
Oops, something went wrong.