Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] Change AtenScatterReduce to AtenScatterReduceTwoOp with tm_tensor pass for onnx.ScatterElements #3754

Merged
merged 4 commits into from
Oct 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -635,18 +635,21 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(

// TODO: Implement max and min cases
if (reduction == "mul") {
reduction = "multiply";
reduction = "prod";
} else if (reduction == "max" || reduction == "min") {
return rewriter.notifyMatchFailure(
binder.op, "max/min reduction unsupported for scatter elements");
} else if (reduction == "add") {
reduction = "sum";
}

Value cstStrReduction =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), reduction);

rewriter.replaceOpWithNewOp<Torch::AtenScatterReduceOp>(
Value cstTrue =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
rewriter.replaceOpWithNewOp<Torch::AtenScatterReduceTwoOp>(
binder.op, resultType, data, constAxis, indices, updates,
cstStrReduction);
cstStrReduction, cstTrue);
return success();
});
patterns.onOp(
Expand Down
1 change: 0 additions & 1 deletion projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -3084,7 +3084,6 @@
"ScatterReduceIntMaxModuleIncludeSelf",
"ScatterReduceIntMinModuleIncludeSelf",
"ScatterValueFloatModule_basic",
"ScatterAddStaticModule_basic",
# Failure - onnx_lowering: onnx.ScatterND
"IndexPut1DFloatAccumulateModule_basic",
"IndexPut1DIntAccumulateModule_basic",
Expand Down
38 changes: 20 additions & 18 deletions test/Conversion/TorchOnnxToTorch/simple_ops_q_to_z.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -261,15 +261,16 @@ func.func @test_scatter_elements_with_axis(%arg0: !torch.vtensor<[1,5],f32>, %ar

// CHECK-LABEL: func.func @test_scatter_elements_with_duplicate_indices
func.func @test_scatter_elements_with_duplicate_indices(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1,2],si64>, %arg2: !torch.vtensor<[1,2],f32>) -> !torch.vtensor<[1,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[AXIS:.*]] = torch.constant.int 1
// CHECK: %[[ZERO:.+]] = torch.constant.int 0
// CHECK: %[[ONE:.+]] = torch.constant.int 1
// CHECK: %[[SZ:.+]] = torch.aten.size.int %arg0, %[[AXIS]]
// CHECK: %[[ADD:.+]] = torch.aten.add.Scalar %arg1, %[[SZ]], %[[ONE]]
// CHECK: %[[CMP:.+]] = torch.aten.lt.Scalar %arg1, %[[ZERO]]
// CHECK: %[[WHERE:.+]] = torch.aten.where.self %[[CMP]], %[[ADD]], %arg1
// CHECK: %[[STR:.*]] = torch.constant.str "add"
// CHECK: torch.aten.scatter.reduce %arg0, %[[AXIS]], %[[WHERE]], %arg2, %str : !torch.vtensor<[1,5],f32>, !torch.int, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>, !torch.str -> !torch.vtensor<[1,5],f32>
// CHECK: %[[AXIS:.*]] = torch.constant.int 1
// CHECK: %[[ZERO:.*]] = torch.constant.int 0
// CHECK: %[[FIVE:.*]] = torch.constant.int 1
// CHECK: %[[SZ:.*]] = torch.aten.size.int %arg0, %[[AXIS]] : !torch.vtensor<[1,5],f32>, !torch.int -> !torch.int
// CHECK: %[[ADD:.*]] = torch.aten.add.Scalar %arg1, %[[SZ]], %[[FIVE]] : !torch.vtensor<[1,2],si64>, !torch.int, !torch.int -> !torch.vtensor<[1,2],si64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Scalar %arg1, %[[ZERO]] : !torch.vtensor<[1,2],si64>, !torch.int -> !torch.vtensor<[1,2],i1>
// CHECK: %[[WHERE:.*]] = torch.aten.where.self %[[CMP]], %[[ADD]], %arg1 : !torch.vtensor<[1,2],i1>, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],si64> -> !torch.vtensor<[1,2],si64>
// CHECK: %[[STR:.*]] = torch.constant.str "sum"
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: torch.aten.scatter_reduce.two %arg0, %[[AXIS]], %[[WHERE]], %arg2, %[[STR]], %[[TRUE]] : !torch.vtensor<[1,5],f32>, !torch.int, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>, !torch.str, !torch.bool -> !torch.vtensor<[1,5],f32>
%0 = torch.operator "onnx.ScatterElements"(%arg0, %arg1, %arg2) {torch.onnx.axis = 1 : si64, torch.onnx.reduction = "add"} : (!torch.vtensor<[1,5],f32>, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>) -> !torch.vtensor<[1,5],f32>
return %0 : !torch.vtensor<[1,5],f32>
}
Expand All @@ -294,15 +295,16 @@ func.func @test_scatter_elements_without_axis(%arg0: !torch.vtensor<[3,3],f32>,

// CHECK-LABEL: func.func @test_scatter_elements_with_reduction_mul
func.func @test_scatter_elements_with_reduction_mul(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1,2],si64>, %arg2: !torch.vtensor<[1,2],f32>) -> !torch.vtensor<[1,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[AXIS:.*]] = torch.constant.int 1
// CHECK: %[[ZERO:.+]] = torch.constant.int 0
// CHECK: %[[ONE:.+]] = torch.constant.int 1
// CHECK: %[[SZ:.+]] = torch.aten.size.int %arg0, %[[AXIS]]
// CHECK: %[[ADD:.+]] = torch.aten.add.Scalar %arg1, %[[SZ]], %[[ONE]]
// CHECK: %[[CMP:.+]] = torch.aten.lt.Scalar %arg1, %[[ZERO]]
// CHECK: %[[WHERE:.+]] = torch.aten.where.self %[[CMP]], %[[ADD]], %arg1
// CHECK: %[[STR:.*]] = torch.constant.str "multiply"
// CHECK: torch.aten.scatter.reduce %arg0, %[[AXIS]], %[[WHERE]], %arg2, %str : !torch.vtensor<[1,5],f32>, !torch.int, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>, !torch.str -> !torch.vtensor<[1,5],f32>
// CHECK: %[[AXIS:.*]] = torch.constant.int 1
// CHECK: %[[ZERO:.*]] = torch.constant.int 0
// CHECK: %[[FIVE:.*]] = torch.constant.int 1
// CHECK: %[[SZ:.*]] = torch.aten.size.int %arg0, %[[AXIS]] : !torch.vtensor<[1,5],f32>, !torch.int -> !torch.int
// CHECK: %[[ADD:.*]] = torch.aten.add.Scalar %arg1, %[[SZ]], %[[FIVE]] : !torch.vtensor<[1,2],si64>, !torch.int, !torch.int -> !torch.vtensor<[1,2],si64>
// CHECK: %[[CMP:.*]] = torch.aten.lt.Scalar %arg1, %[[ZERO]] : !torch.vtensor<[1,2],si64>, !torch.int -> !torch.vtensor<[1,2],i1>
// CHECK: %[[WHERE:.*]] = torch.aten.where.self %[[CMP]], %[[ADD]], %arg1 : !torch.vtensor<[1,2],i1>, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],si64> -> !torch.vtensor<[1,2],si64>
// CHECK: %[[STR:.*]] = torch.constant.str "prod"
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: torch.aten.scatter_reduce.two %arg0, %[[AXIS]], %[[WHERE]], %arg2, %[[STR]], %[[TRUE]] : !torch.vtensor<[1,5],f32>, !torch.int, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>, !torch.str, !torch.bool -> !torch.vtensor<[1,5],f32>
%0 = torch.operator "onnx.ScatterElements"(%arg0, %arg1, %arg2) {torch.onnx.axis = 1 : si64, torch.onnx.reduction = "mul"} : (!torch.vtensor<[1,5],f32>, !torch.vtensor<[1,2],si64>, !torch.vtensor<[1,2],f32>) -> !torch.vtensor<[1,5],f32>
return %0 : !torch.vtensor<[1,5],f32>
}
Expand Down
Loading