Skip to content

Commit

Permalink
CLIP (ViT) (ml-explore#315)
Browse files Browse the repository at this point in the history
* probably approximatelly correct CLIPTextEncoder

* implemented CLIPEncoderLayer as built-in nn.TransformerEncoderLayer

* replaced embedding layer with simple matrix

* implemented ViT

* added ViT tests

* fixed tests

* added pooler_output for text

* implemented complete CLIPModel

* implemented init

* implemented convert.py and from_pretrained

* fixed some minor bugs and added the README.md

* removed tokenizer unused comments

* removed unused deps

* updated ACKNOWLEDGEMENTS.md

* Feat: Image Processor for CLIP (#1)

@nkasmanoff:
* clip image processor
* added example usage

* refactored image preprocessing

* deleted unused image_config.py

* removed preprocessing port

* added dependency to mlx-data

* fixed attribution and moved photos to assets

* implemented a simple port of CLIPImageProcessor

* review changes

* PR review changes

* renamed too verbose arg

* updated README.md

* nits in readme / conversion

* simplify some stuff, remove unneeded inits

* remove more init stuff

* more simplify

* make test a unit test

* update main readme

* readme nits

---------

Co-authored-by: Noah Kasmanoff <[email protected]>
Co-authored-by: Awni Hannun <[email protected]>
  • Loading branch information
3 people authored Jan 31, 2024
1 parent ba3a935 commit 9435821
Show file tree
Hide file tree
Showing 14 changed files with 890 additions and 0 deletions.
1 change: 1 addition & 0 deletions ACKNOWLEDGMENTS.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,4 @@ MLX Examples was developed with contributions from the following individuals:
- Juarez Bochi: Added support for T5 models.
- Sarthak Yadav: Added the `cifar` and `speechcommands` examples.
- Shunta Saito: Added support for PLaMo models.
- Gabrijel Boduljak: Implemented `CLIP`.
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,15 @@ Some more useful examples are listed below.

- Speech recognition with [OpenAI's Whisper](whisper).

### Multimodal models

- Joint text and image embeddings with [CLIP](clip).

### Other Models

- Semi-supervised learning on graph-structured data with [GCN](gcn).
- Real NVP [normalizing flow](normalizing_flow) for density estimation and
sampling.

### Hugging Face

Expand Down
1 change: 1 addition & 0 deletions clip/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
mlx_model/
76 changes: 76 additions & 0 deletions clip/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# CLIP

An example of OpenAI's CLIP in MLX. The CLIP (contrastive language-image
pre-training) model embeds images and text in the same space.[^1]

### Setup

Install the dependencies:

```shell
pip install -r requirements.txt
```

Next, download a CLIP model from Hugging Face and convert it to MLX. The
default model is
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32).

```
python convert.py
```

The script will by default download the model and configuration files to the
directory ``mlx_model/``.

### Run

You can use the CLIP model to embed images and text.

```python
from PIL import Image
import clip

model, tokenizer, img_processor = clip.load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)

# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
```

Run the above example with `python clip.py`.

To embed only images or only the text, pass only the ``input_ids`` or
``pixel_values``, respectively.

This example re-implements minimal image preprocessing and tokenization to reduce
dependencies. For additional preprocessing functionality, you can use
``transformers``. The file `hf_preproc.py` has an example.

MLX CLIP has been tested and works with the following Hugging Face repos:

- [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)
- [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)

You can run the tests with:

```shell
python test.py
```

To test new models, update the `MLX_PATH` and `HF_PATH` in `test.py`.

### Attribution

- `assets/cat.jpeg` is a "Cat" by London's, licensed under CC BY-SA 2.0.
- `assets/dog.jpeg` is a "Happy Dog" by tedmurphy, licensed under CC BY 2.0.

[^1]: Refer to the original paper [Learning Transferable Visual Models From
Natural Language Supervision ](https://arxiv.org/abs/2103.00020) or [blog
post](https://openai.com/research/clip)
Binary file added clip/assets/cat.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added clip/assets/dog.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
31 changes: 31 additions & 0 deletions clip/clip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
from typing import Tuple

from image_processor import CLIPImageProcessor
from model import CLIPModel
from tokenizer import CLIPTokenizer


def load(model_dir: str) -> Tuple[CLIPModel, CLIPTokenizer, CLIPImageProcessor]:
model = CLIPModel.from_pretrained(model_dir)
tokenizer = CLIPTokenizer.from_pretrained(model_dir)
img_processor = CLIPImageProcessor.from_pretrained(model_dir)
return model, tokenizer, img_processor


if __name__ == "__main__":
from PIL import Image

model, tokenizer, img_processor = load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)

# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
print("Text embeddings shape:", text_embeds.shape)
print("Image embeddings shape:", image_embeds.shape)
107 changes: 107 additions & 0 deletions clip/convert.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# Copyright © 2023-2024 Apple Inc.

import argparse
import shutil
from pathlib import Path
from typing import Tuple

import mlx.core as mx
import torch
from huggingface_hub import snapshot_download


def get_model_path(path_or_hf_repo: str) -> Path:
model_path = Path(path_or_hf_repo)
if not model_path.exists():
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=[
"*.bin",
"*.json",
"*.txt",
],
)
)
return model_path


def torch_to_mx(a: torch.Tensor, *, dtype: str) -> mx.array:
# bfloat16 is not numpy convertible. Upcast to float32 to avoid precision loss
a = a.to(torch.float32) if dtype == "bfloat16" else a.to(getattr(torch, dtype))
return mx.array(a.numpy(), getattr(mx, dtype))


def map_weights(key: str, value: torch.Tensor) -> Tuple[str, mx.array]:
key = key.replace("embeddings.", "")
key = key.replace("encoder.", "")
key = key.replace("position_embedding.weight", "position_embedding")

# Map attention layers
if "self_attn." in key:
key = key.replace("self_attn.", "attention.")
if "q_proj." in key:
key = key.replace("q_proj.", "query_proj.")
if "k_proj." in key:
key = key.replace("k_proj.", "key_proj.")
if "v_proj." in key:
key = key.replace("v_proj.", "value_proj.")
if "layer_norm1." in key:
key = key.replace("layer_norm1.", "ln1.")
if "layer_norm2." in key:
key = key.replace("layer_norm2.", "ln2.")
# Map ffn layers
if "mlp.fc1" in key:
key = key.replace("mlp.fc1", "linear1")
if "mlp.fc2" in key:
key = key.replace("mlp.fc2", "linear2")
# Fix layernorm typo
if "pre_layrnorm" in key:
# Fix typo in weights :)
key = key.replace("pre_layrnorm", "pre_layernorm")
if "patch_embedding.weight" in key:
# Initially, value: [out_channels, in_channels, kH, KW].
# We want [out_channels, kH, KW, in_channels]
value = value.permute(0, 2, 3, 1)
return (key, torch_to_mx(value, dtype=str(value.dtype).replace("torch.", "")))


def should_keep_weight(key: str):
return not ("position_ids" in key)


if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Download and Convert (OpenAI) CLIP weights to MLX"
)
parser.add_argument(
"--hf-repo",
type=str,
default="openai/clip-vit-base-patch32",
help="Hugging Face repository name.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="Path to save the MLX model.",
)

args = parser.parse_args()

torch_path = get_model_path(args.hf_repo)
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)

print("[INFO] Loading")
torch_weights = torch.load(torch_path / "pytorch_model.bin")
print("[INFO] Converting")
mlx_weights = dict(map_weights(k, v) for (k, v) in torch_weights.items())
mlx_weights = {k: v for (k, v) in mlx_weights.items() if should_keep_weight(k)}
print("[INFO] Saving")
mx.savez(str(mlx_path / "weights.npz"), **mlx_weights)
for fn in ["config.json", "merges.txt", "vocab.json", "preprocessor_config.json"]:
shutil.copyfile(
str(torch_path / f"{fn}"),
str(mlx_path / f"{fn}"),
)
29 changes: 29 additions & 0 deletions clip/hf_preproc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
import mlx.core as mx
import transformers
from PIL import Image

import clip

hf_model = "openai/clip-vit-base-patch32"
mlx_model = "mlx_model"

model, *_ = clip.load(mlx_model)
processor = transformers.CLIPProcessor.from_pretrained(hf_model)

inputs = processor(
text=["a photo of a cat", "a photo of a dog"],
images=[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")],
return_tensors="np",
)

out = model(
input_ids=mx.array(inputs.input_ids),
pixel_values=mx.array(inputs.pixel_values).transpose((0, 2, 3, 1)),
return_loss=True,
)

print("text embeddings:")
print(out.text_embeds)
print("image embeddings:")
print(out.image_embeds)
print(f"CLIP loss: {out.loss.item():.3f}")
93 changes: 93 additions & 0 deletions clip/image_processor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright © 2023-2024 Apple Inc.

import json
from pathlib import Path
from typing import List, Tuple

import mlx.core as mx
import numpy as np
from PIL.Image import Image


class CLIPImageProcessor:
"""
A simple port of
https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/image_processing_clip.py.
"""

def __init__(
self,
crop_size: int = 224,
do_center_crop: bool = True,
do_normalize: bool = True,
do_resize: bool = True,
image_mean: List[float] = [0.48145466, 0.4578275, 0.40821073],
image_std: List[float] = [0.26862954, 0.26130258, 0.27577711],
size: int = 224,
**kwargs
) -> None:
self.crop_size = crop_size
self.do_center_crop = do_center_crop
self.do_normalize = do_normalize
self.do_resize = do_resize
self.image_mean = mx.array(image_mean)
self.image_std = mx.array(image_std)
self.size = size

def __call__(self, images: List[Image]) -> mx.array:
return mx.concatenate(
[self._preprocess(image)[None] for image in images], axis=0
)

def _preprocess(self, image: Image) -> mx.array:
if self.do_resize:
image = resize(image, self.size)
if self.do_center_crop:
image = center_crop(image, (self.crop_size, self.crop_size))
image = mx.array(np.array(image))
image = rescale(image)
if self.do_normalize:
image = normalize(image, self.image_mean, self.image_std)
return image

@staticmethod
def from_pretrained(path: str):
path = Path(path)
with open(path / "preprocessor_config.json", encoding="utf-8") as f:
config = json.load(f)
return CLIPImageProcessor(**config)


def resize(image: Image, short_size: int) -> Image:
"""
Resize so small size to short_size
"""
width, height = image.size
short = min(width, height)
long = max(width, height)
if short == short_size:
return image
new_short = short_size
new_long = int(short_size * long / short)
new_size = (new_short, new_long) if width <= height else (new_long, new_short)
return image.resize(new_size)


def center_crop(image: Image, size: Tuple[int, int]) -> Image:
if size[0] % 2 != 0 or size[1] % 2 != 0:
raise ValueError("Only even crop sizes supported.")
original_width, original_height = image.size
crop_height, crop_width = size
top = (original_height - crop_height) // 2
bottom = top + crop_height
left = (original_width - crop_width) // 2
right = left + crop_width
return image.crop((left, top, right, bottom))


def rescale(image: mx.array) -> mx.array:
return image.astype(mx.float32) * (1 / 255.0)


def normalize(image: mx.array, mean: mx.array, std: mx.array) -> mx.array:
return (image - mean) / std
Loading

0 comments on commit 9435821

Please sign in to comment.