Skip to content

Commit

Permalink
more scaffold
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Nov 9, 2021
1 parent a609817 commit f691b9b
Show file tree
Hide file tree
Showing 8 changed files with 294 additions and 0 deletions.
36 changes: 36 additions & 0 deletions .github/workflows/python-publish.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries

# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.

name: Upload Python Package

on:
release:
types: [published]

jobs:
deploy:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}
3 changes: 3 additions & 0 deletions data/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# Data source

The enwik8 data was downloaded from the Hutter prize page: http://prize.hutter1.net/
Binary file added data/enwik8.gz
Binary file not shown.
1 change: 1 addition & 0 deletions hourglass_transformer_pytorch/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from hourglass_transformer_pytorch.hourglass_transformer_pytorch import HourglassTransformer
70 changes: 70 additions & 0 deletions hourglass_transformer_pytorch/autoregressive_wrapper.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import torch
from torch import nn
import torch.nn.functional as F

# helper function

def exists(val):
return val is not None

def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner

# top k filtering

def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs

class AutoregressiveWrapper(nn.Module):
def __init__(self, net, pad_value = 0):
super().__init__()
self.pad_value = pad_value
self.net = net
self.max_seq_len = net.max_seq_len

@torch.no_grad()
@eval_decorator
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_thres = 0.9, **kwargs):
b, t, device = *start_tokens.shape, start_tokens.device

out = start_tokens

for _ in range(seq_len):
x = out[:, -self.max_seq_len:]

logits = self.net(x, **kwargs)[:, -1, :]

filtered_logits = top_k(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)

sample = torch.multinomial(probs, 1)

out = torch.cat((out, sample), dim=-1)

if exists(eos_token):
is_eos_token = (out == eos_token)

if is_eos_token.any(dim = -1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
out = out.masked_fill(mask, self.pad_value)
break

out = out[:, t:]
return out

def forward(self, x, **kwargs):
x_inp, x_labels = x[:, :-1], x[:, 1:]
logits = self.net(x_inp, **kwargs)
return F.cross_entropy(logits.transpose(1, 2), x_labels, ignore_index = self.pad_value)
47 changes: 47 additions & 0 deletions hourglass_transformer_pytorch/hourglass_transformer_pytorch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange

# helpers

def exists(val):
return val is not None

def default(val, d):
return val if exists(val) else d

# classes

# main class

class HourglassTransformer(nn.Module):
def __init__(
self,
*,
num_tokens,
dim,
max_seq_len,
depth,
heads = 8,
dim_head = 64,
causal = True
):
super().__init__()
self.max_seq_len = max_seq_len

self.token_emb = nn.Embedding(num_tokens, dim)
self.pos_emb = nn.Embedding(max_seq_len, dim)

self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_tokens)
)

def forward(self, x):
device = x.device
x = self.token_emb(x)
pos_emb = self.pos_emb(torch.arange(x.shape[-2], device = device))
x = x + rearrange(pos_emb, 'n d -> () n d')

return self.to_logits(x)
28 changes: 28 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
from setuptools import setup, find_packages

setup(
name = 'hourglass-transformer-pytorch',
packages = find_packages(),
version = '0.0.1',
license='MIT',
description = 'Hourglass Transformer',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/hourglass-transformer-pytorch',
keywords = [
'artificial intelligence',
'attention mechanism',
'transformers'
],
install_requires=[
'einops',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
109 changes: 109 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
from hourglass_transformer_pytorch import HourglassTransformer
from hourglass_transformer_pytorch.autoregressive_wrapper import AutoregressiveWrapper

import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset

# constants

NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 512

# helpers

def cycle(loader):
while True:
for data in loader:
yield data

def decode_token(token):
return str(chr(max(32, token)))

def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))

# instantiate GPT-like decoder model

model = HourglassTransformer(
num_tokens = 256,
dim = 512,
max_seq_len = SEQ_LEN,
depth = 8,
heads = 8,
causal = True
)

model = AutoregressiveWrapper(model)
model.cuda()

# prepare enwik8 data

with gzip.open('./data/enwik8.gz') as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)

class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len

def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()

def __len__(self):
return self.data.size(0) // self.seq_len

train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))

# optimizer

optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

# training

for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()

for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()

print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()

if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f'validation loss: {loss.item()}')

if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))

sample = model.generate(inp[None, ...], GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
print(output_str)

0 comments on commit f691b9b

Please sign in to comment.