Skip to content

Commit

Permalink
Update executorch.js (#1175)
Browse files Browse the repository at this point in the history
  • Loading branch information
lutzroeder committed Jan 20, 2025
1 parent e5a74db commit a8ef830
Show file tree
Hide file tree
Showing 3 changed files with 116 additions and 24 deletions.
118 changes: 97 additions & 21 deletions source/executorch.js
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,17 @@

const executorch = {};

import * as flatbuffers from './flatbuffers.js';
import * as python from './python.js';
import * as pytorch from './pytorch.js';

executorch.ModelFactory = class {

match(context) {
const reader = context.peek('flatbuffers.binary');
if (reader && reader.identifier === 'ET12') {
const container = executorch.Container.open(context);
if (container) {
context.type = 'executorch';
context.target = reader;
context.target = container;
}
}

Expand All @@ -22,20 +23,20 @@ executorch.ModelFactory = class {
const metadata = await pytorch.Metadata.open(context);
const execution = new python.Execution();
metadata.register(execution);
const reader = context.target;
const program = executorch.schema.Program.create(reader);
return new executorch.Model(execution, program);
const target = context.target;
await target.read();
return new executorch.Model(execution, target);
}
};

executorch.Model = class {

constructor(execution, program) {
this.format = `ExecuTorch v${program.version}`;
constructor(execution, context) {
this.format = `ExecuTorch v${context.program.version}`;
this.graphs = [];
for (const plan of program.execution_plan) {
for (const plan of context.program.execution_plan) {
for (const chain of plan.chains) {
const graph = new executorch.Graph(execution, chain, plan);
const graph = new executorch.Graph(execution, context, plan, chain);
this.graphs.push(graph);
}
}
Expand All @@ -44,15 +45,15 @@ executorch.Model = class {

executorch.Graph = class {

constructor(execution, chain, plan) {
constructor(execution, context, plan, chain) {
this.inputs = [];
this.outputs = [];
this.nodes = [];
const values = new Map();
values.map = (index, output) => {
if (!values.has(index)) {
const v = plan.values[index].val;
const tensor = v instanceof executorch.schema.Tensor || v instanceof executorch.schema.TensorList;
const tensor = v instanceof executorch.schema.Tensor || v instanceof executorch.schema.TensorList || v instanceof executorch.schema.OptionalTensorList;
if (output && !tensor) {
const value = [new executorch.Value(index.toString(), null, null)];
values.set(index, { type: null, value });
Expand All @@ -64,7 +65,7 @@ executorch.Graph = class {
const type = new executorch.TensorType(tensor);
let initializer = null;
if (v.data_buffer_idx > 0) {
initializer = new executorch.Tensor(tensor);
initializer = new executorch.Tensor(tensor, context);
}
const identifier = tensors.length > 1 ? `${index}.${i}` : index.toString();
const value = new executorch.Value(identifier, type, initializer);
Expand All @@ -88,18 +89,22 @@ executorch.Graph = class {
}
return values.get(index);
};
for (const input of plan.inputs) {
for (let i = 0; i < plan.inputs.length; i++) {
const input = plan.inputs[i];
const value = values.map(input);
const argument = new executorch.Argument(input.toString(), value.value, value.type);
const name = plan.inputs.length === 1 ? 'input' : `input.${i}`;
const argument = new executorch.Argument(name, value.value, value.type);
this.inputs.push(argument);
}
for (const output of plan.outputs) {
for (let i = 0; i < plan.outputs.length; i++) {
const output = plan.outputs[i];
const value = values.map(output);
const argument = new executorch.Argument(output.toString(), value.value, value.type);
const name = plan.outputs.length === 1 ? 'output' : `output.${i}`;
const argument = new executorch.Argument(name, value.value, value.type);
this.outputs.push(argument);
}
for (const instruction of chain.instructions) {
const node = new executorch.Node(execution, instruction, plan, values);
const node = new executorch.Node(execution, context, plan, chain, instruction, values);
this.nodes.push(node);
}
}
Expand Down Expand Up @@ -129,7 +134,7 @@ executorch.Value = class Value {

executorch.Node = class {

constructor(execution, instruction, plan, values) {
constructor(execution, context, plan, chain, instruction, values) {
this.name = '';
this.inputs = [];
this.outputs = [];
Expand Down Expand Up @@ -179,12 +184,31 @@ executorch.Node = class {
const args = instr_args.args;
const name = delegate.id;
this.type = { name };
let data = null;
const DataLocation = executorch.schema.DataLocation;
switch (delegate.processed.location) {
case DataLocation.INLINE: {
data = context.program.backend_delegate_data[delegate.processed.index].data;
break;
}
case DataLocation.SEGMENT: {
const segment = context.program.segments[delegate.processed.index];
context.reader.seek(context.extended_file_header.segment_base_offset + segment.offset.toNumber());
data = context.reader.read(segment.size.toNumber());
break;
}
default: {
throw new executorch.Error(`Delegate data location '${delegate.processed.location}' not implemented.`);
}
}
switch (name) {
case 'XnnpackBackend': {
const input = values.map(args[0]);
const output = values.map(args[1], true);
this.inputs.push(new executorch.Argument('input', input.value, input.type));
this.outputs.push(new executorch.Argument('output', output.value, output.type));
flatbuffers.BinaryReader.open(data);
// executorch/backends/xnnpack/serialization/schema.fbs
break;
}
case 'CoreMLBackend': {
Expand Down Expand Up @@ -227,7 +251,7 @@ executorch.TensorType = class {
if (tensor.scalar_type >= executorch.TensorType._types.length) {
throw new executorch.Error(`Unknown tensor data type '${tensor.scalar_type}'.`);
}
this.dataType = executorch.TensorType._types.length[tensor.scalar_type];
this.dataType = executorch.TensorType._types[tensor.scalar_type];
this.shape = new executorch.TensorShape(Array.from(tensor.sizes));
}

Expand All @@ -252,8 +276,60 @@ executorch.TensorShape = class {

executorch.Tensor = class {

constructor(tensor) {
constructor(tensor, context) {
this.type = new executorch.TensorType(tensor);
const data_buffer_idx = tensor.data_buffer_idx;
if (tensor.extra_tensor_info) {
throw new executorch.Error('Extra tensor info not implemented.');
} else if (context.program.constant_buffers) {
throw new executorch.Error('Constant buffers not implemented.');
} else if (tensor.allocation_info === null) {
const constant_segment = context.program.constant_segment;
const data_segment = context.program.segments[constant_segment.segment_index];
const offset = constant_segment.offsets[data_buffer_idx].toNumber();
const next = data_buffer_idx + 1 < constant_segment.offsets.length ? constant_segment.offsets[data_buffer_idx + 1].toNumber() : data_segment.size.toNumber();
const size = next - offset;
const reader = context.reader;
reader.seek(context.extended_file_header.segment_base_offset + data_segment.offset.toNumber() + offset);
this.encoding = '<';
this.values = reader.read(size);
reader.seek(0);
} else {
throw new executorch.Error('Tensor allocation info not implemented.');
}
}
};

executorch.Container = class {

static open(context) {
const reader = context.peek('flatbuffers.binary');
if (reader && reader.identifier === 'ET12') {
return new executorch.Container(context, reader);
}
return null;
}

constructor(context, reader) {
this.context = context;
this.reader = reader;
}

async read() {
this.program = executorch.schema.Program.create(this.reader);
this.reader = this.context.read('binary');
if (this.reader.length >= 32) {
this.reader.seek(8);
const magic = String.fromCharCode(...this.reader.read(4));
if (magic === 'eh00') {
this.extended_file_header = {
length: this.reader.uint32(),
program_size: this.reader.uint64().toNumber(),
segment_base_offset: this.reader.uint64().toNumber(),
};
}
this.reader.seek(0);
}
}
};

Expand Down
14 changes: 14 additions & 0 deletions test/models.json
Original file line number Diff line number Diff line change
Expand Up @@ -6570,6 +6570,20 @@
"format": "PyTorch v1.6",
"link": "https://github.com/lutzroeder/netron/issues/543"
},
{
"type": "pytorch",
"target": "style_transfer_candy_coreml.pte",
"source": "https://github.com/user-attachments/files/18469498/style_transfer_candy_coreml.pte.zip[style_transfer_candy_coreml.pte]",
"format": "ExecuTorch v0",
"link": "https://github.com/lutzroeder/netron/issues/1175"
},
{
"type": "pytorch",
"target": "style_transfer_candy_xnnpack.pte",
"source": "https://github.com/user-attachments/files/18469499/style_transfer_candy_xnnpack.pte.zip[style_transfer_candy_xnnpack.pte]",
"format": "ExecuTorch v0",
"link": "https://github.com/lutzroeder/netron/issues/1175"
},
{
"type": "pytorch",
"target": "superpoint.pt",
Expand Down
8 changes: 5 additions & 3 deletions tools/executorch
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,11 @@ clean() {

sync() {
echo "executorch sync"
mkdir -p "./third_party/source/executorch/schema"
curl --silent --location --output "./third_party/source/executorch/schema/scalar_type.fbs" "https://github.com/pytorch/executorch/raw/main/schema/scalar_type.fbs"
curl --silent --location --output "./third_party/source/executorch/schema/program.fbs" "https://github.com/pytorch/executorch/raw/main/schema/program.fbs"
[ -d "./third_party/source/executorch" ] || git clone --quiet https://github.com/pytorch/executorch.git "./third_party/source/executorch"
git -C "./third_party/source/executorch" pull --quiet --prune
# mkdir -p "./third_party/source/executorch/schema"
# curl --silent --location --output "./third_party/source/executorch/schema/scalar_type.fbs" "https://github.com/pytorch/executorch/raw/main/schema/scalar_type.fbs"
# curl --silent --location --output "./third_party/source/executorch/schema/program.fbs" "https://github.com/pytorch/executorch/raw/main/schema/program.fbs"
}

schema() {
Expand Down

0 comments on commit a8ef830

Please sign in to comment.