-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Changes suggested by @johnomotani to remove boundary conditions from …
…mass matrix inversion when carrying out differentiation, and including explicit boundary terms. Here this is handled with explicit boundary terms in the test script GaussLobattoLegendre_test.jl for 1D differentiation operations only using assembled matrices (derivative functions not yet supported). Subject to testing, these changes will be implemented across the gauss_legendre.jl and fokker_planck*.jl modules.
- Loading branch information
Showing
2 changed files
with
20 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1360367
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@johnomotani At your convenience, could you please check to see if there are still problems with the 1D differentiation test in GaussLobattoLegendre_test.jl in the intermediate integration by parts step? A brief check now suggests that the errors are much smaller (and comparable between weak and interpolation methods) for L_in = O(1). If you confirm that things are now looking OK then I will roll the changes out systematically to the other affected modules.
UPDATE: Looking at small ngrid (2,3,4) and small L_in (<1), the errors on the weak-form second derivatives still seem potentially large even for large values of nelement.
1360367
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@mrhardman nice! That looks like errors are now small at the boundary even when the test function has non-zero derivative at the boundary. Interestingly, there is a slightly bigger error at the boundary point than when testing with zero-ed out boundary terms and a test function that has exactly zero derivative at the boundary - I guess the numerical derivative that effectively feeds into the boundary terms introduces some error?? Anyway, it's a small error now, so fingers crossed it will be OK. Would be nice if this would make the long-time stability of your simulations better!