Skip to content

Commit

Permalink
Compute Operation Flat Field (#2125)
Browse files Browse the repository at this point in the history
  • Loading branch information
samtygier-stfc authored Jun 20, 2024
2 parents b866326 + 6220d70 commit f0433e5
Showing 1 changed file with 13 additions and 50 deletions.
63 changes: 13 additions & 50 deletions mantidimaging/core/operations/flat_fielding/flat_fielding.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,7 @@

from mantidimaging import helper as h
from mantidimaging.core.operations.base_filter import BaseFilter, FilterGroup
from mantidimaging.core.parallel import utility as pu, shared as ps
from mantidimaging.core.utility.progress_reporting import Progress
from mantidimaging.core.parallel import shared as ps
from mantidimaging.gui.utility.qt_helpers import Type
from mantidimaging.gui.widgets.dataset_selector import DatasetSelectorWidgetView

Expand Down Expand Up @@ -75,7 +74,6 @@ def filter_func(images: ImageStack,
use_dark: bool = True,
progress=None) -> ImageStack:
"""Do background correction with flat and dark images.
:param images: Sample data which is to be processed. Expected in radiograms
:param flat_before: Flat (open beam) image to use in normalization, collected before the sample was imaged
:param flat_after: Flat (open beam) image to use in normalization, collected after the sample was imaged
Expand All @@ -87,7 +85,6 @@ def filter_func(images: ImageStack,
:return: Filtered data (stack of images)
"""
h.check_data_stack(images)

if selected_flat_fielding not in ["Both, concatenated", "Only Before", "Only After"]:
raise ValueError(f"Invalid flat fielding method: {selected_flat_fielding}")

Expand Down Expand Up @@ -130,19 +127,26 @@ def filter_func(images: ImageStack,
raise ValueError(
f"Incorrect shape of the flat image ({flat_avg.shape}) or dark image ({dark_avg.shape}) "
f"which should match the shape of the sample images ({images.data.shape[1:]})")

if not (images.data.shape[1:] == flat_avg.shape == dark_avg.shape):
raise ValueError(f"Not all images are the expected shape: {images.data.shape[1:]}, instead "
f"flat had shape: {flat_avg.shape}, and dark had shape: {dark_avg.shape}")

progress = Progress.ensure_instance(progress,
num_steps=images.data.shape[0],
task_name='Background Correction')
_execute(images, flat_avg, dark_avg, progress)
params = {'flat_avg': flat_avg, 'dark_avg': dark_avg}
ps.run_compute_func(FlatFieldFilter._compute_flat_field, len(images.data), [images.shared_array], params)

h.check_data_stack(images)
return images

@staticmethod
def _compute_flat_field(index: int, array: np.ndarray, params: dict):
flat_avg = params['flat_avg']
dark_avg = params['dark_avg']

norm_divide = flat_avg - dark_avg
norm_divide[norm_divide == 0] = MINIMUM_PIXEL_VALUE
array[index] -= dark_avg
array[index] /= norm_divide

@staticmethod
def register_gui(form, on_change, view) -> dict[str, Any]:
from mantidimaging.gui.utility import add_property_to_form
Expand Down Expand Up @@ -276,44 +280,3 @@ def validate_execute_kwargs(kwargs):
@staticmethod
def group_name() -> FilterGroup:
return FilterGroup.Basic


def _divide(data, norm_divide):
np.true_divide(data, norm_divide, out=data)


def _subtract(data, dark=None):
# specify out to do in place, otherwise the data is copied
np.subtract(data, dark, out=data)


def _norm_divide(flat: np.ndarray, dark: np.ndarray) -> np.ndarray:
# subtract dark from flat
return np.subtract(flat, dark)


def _execute(images: ImageStack, flat=None, dark=None, progress=None):
with progress:
progress.update(msg="Applying background correction")

if images.uses_shared_memory:
shared_dark = pu.copy_into_shared_memory(dark)
norm_divide = pu.copy_into_shared_memory(_norm_divide(flat, dark))
else:
shared_dark = pu.SharedArray(dark, None)
norm_divide = pu.SharedArray(_norm_divide(flat, dark), None)

# prevent divide-by-zero issues, and negative pixels make no sense
norm_divide.array[norm_divide.array == 0] = MINIMUM_PIXEL_VALUE

# subtract the dark from all images
do_subtract = ps.create_partial(_subtract, fwd_function=ps.inplace_second_2d)
arrays = [images.shared_array, shared_dark]
ps.execute(do_subtract, arrays, images.data.shape[0], progress)

# divide the data by (flat - dark)
do_divide = ps.create_partial(_divide, fwd_function=ps.inplace_second_2d)
arrays = [images.shared_array, norm_divide]
ps.execute(do_divide, arrays, images.data.shape[0], progress)

return images

0 comments on commit f0433e5

Please sign in to comment.