Skip to content

marrlab/DinoBloom

Repository files navigation

DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology

Repository of DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology which was accepted at MICCAI 2024. It uses DINOv2 and is adapted from their original Github repository. DinoBloom is a model family (ViTs) trained on a large cohort of 13 diverse publicly available datasets of single cells in peripheral blood and bone marrow. The trained models in the can be downloaded on zenodo in the variants DinoBloom-S, DinoBloom-B, DinoBloom-L and DinoBloom-G. We show that our models outperforms existing medical and non-medical vision models in (i) linear probing and k-nearest neighbor evaluations for cell-type classification on peripheral blood and bone marrow smears and (ii) weakly supervised multiple instance learning for acute myeloid leukemia subtyping by a large margin.

Data and pipeline overview

Model farm

Model Feature dim #params Weights
DinoBloom-S 384 22M Download
DinoBloom-B 768 86M Download
DinoBloom-L 1024 304M Download
DinoBloom-G 1536 1136M Download

To train the model you need to specify the folder with .txt files holding the paths of the images you want to use to train in dinov2/configs/train/custom.yaml for training on a single GPU run:

python dinov2/train/train.py --config-file dinov2/configs/train/custom.yaml

for multiple GPUs on one node run

torchrun --nproc_per_node=#num_gpus dinov2/train/train.py --config-file dinov2/configs/train/custom.yaml

Sample Notebook

We provide a sample google colab notebook that shows feature extraction and how to do PCA visualization.

Citing DinoBloom

If you find this repository useful, please consider citing our work:

@misc{koch2024dinobloom,
      title={DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology}, 
      author={Valentin Koch and Sophia J. Wagner and Salome Kazeminia and Ece Sancar and Matthias Hehr and Julia Schnabel and Tingying Peng and Carsten Marr},
      year={2024},
      eprint={2404.05022},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Overview of publicly available Blood Cell Datasets

Dataset Modality #Patient Labels Patient Labels Cell/Image Labels Comment Source Link Publication Link
BMC Bone marrow 171,373 - 21: ABE (Abnormal eosinophils), ART (Artefacts), BAS (Basophils), BLA (Blasts), EBO (Erythroblasts), EOS (Eosinophils), FGC (Faggot cells), HAC (Hairy cells), KSC (Smudge cells), LYI (Immature lymphocytes), LYT (Lymphocytes), MMZ (Metamyelocytes), MON (Monocytes), MYB (Myelocytes), NGB (Band neutrophils), NGS (Segmented neutrophils), NIF (Not identifiable), OTH (Other cells), PEB (Proerythoblasts), PLM (Plasma cells), PMO (Promyelocytes) - Link Link
AML Hehr Blood 101,949 4: PML::RARA, NPM1, CBFB::MYH11, RUNX1::RUNX1T1 - - Link Link
AML Matek Blood 18,365 - 15: BAS (Basophil), EBO (Erythroblast), EOS (Eosinophil), KSC (Smudge cell), LYA (Lymphocyte (atypical)), LYT (Lymphocyte (typical)), MMZ (Metamyelocyte), MOB (Monoblast), MON (Monocyte), MYB (Myelocyte), MYO (Myeloblast), NGB (Neutrophil (band)), NGS (Neutrophil (segmented)), PMB (Promyelocyte (bilobed)), PMO (Promyelocyte) - Link Link
Acevedo Blood 17,092 - 10: basophil, eosinophil, erythroblast, lymphocyte_typical, metamyelocyte, monocyte, myelocyte, neutrophil_band, neutrophil_segmented, promyelocyte - Link Link
Raabin WBC Blood 10,175 - 5: Eosinophil, Lymphocyte, Monocyte, Neutrophil, Basophil - Link Link
NuClick Blood 2,933 - - Segmentation Link Link
Warty pig Blood 2,871 - 4: Basophil, Eosinophil, Monocyte, Neutrophil 667 raw images, 1464 augmented images, and 1408 cropped, classified images Link Link
LISC Blood 2,263 - 5: Basophil, Eosinophil, Monocyte, Neutrophil, Lymphocyte segmentation Link Rezatofighi, S. H. & Soltanian-Zadeh, H. Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph 35, 333–343 (2011).
KRD-WBC Blood 601 - 5: Eosinophil, Lymphocyte, Monocyte, Neutrophil, Basophil Segmentation Link Taha, Haval; Alizadeh, Fattah ; Mohammad, Nawsherwan (2023), “Creating a white blood cell dataset for segmentation”, Mendeley Data, V2, doi: 10.17632/jzdj6h7gms.2
SSL Seg Blood 400 - - Segmentation Link Zheng, X., Wang, Y., Wang, G. & Liu, J. Fast and robust segmentation of white blood cell images by self-supervised learning. Micron 107, 55–71 (2018).
BCCD Blood 364 - 3: WBC, RBC, Platelet detection Link Mohamed, M., Far, B. & Guaily, A. An efficient technique for white blood cells nuclei automatic segmentation. in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 220–225 (2012).
Aslan Blood 100 - 2: WBC, RBC detection Link -
Raabin Leukemia Blood ? 4: Acute Lymphoblastic Leukemia, Acute Myeloblastic Leukemia, Chronic Lymphocytic Leukemia, Chronic Myelogenous Leukemia - - Link -
APL_AML Blood 25,915 2: APL / AML non APL Artifact, Band neutrophils, Basophil, Blast (no lineage spec), Eosinophils, Erythroblast, Giant thrombocyte, Lymphocyte, Lymphocyte (variant), Metamyelocyte, Monocyte, Myelocyte, Plasma cells, Prolymphocyte, Promonocyte, Promyelocyte, Segmented neutrophils, Smudge cells, Thrombocyte aggregation, Unidentified, Young Unidentified - Link Link
White-Blood-Cell-dataset Blood 376 - - Segmentation Link Mohamed, M.M.A., Far, B.H.: An enhanced threshold based technique for white blood cells nuclei automatic segmentation. In: Healthcom, pp. 202–207. IEEE (2012)

About

Blood Cell Foundation Model based on DINOv2

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •