Skip to content

Commit

Permalink
fix more links
Browse files Browse the repository at this point in the history
  • Loading branch information
init27 committed Jan 15, 2025
1 parent 4fcf3dc commit 9564055
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion 3p-integrations/togetherai/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ While the code examples are primarily written in Python/JS, the concepts can be

| Cookbook | Description | Open |
| -------- | ----------- | ---- |
| [MultiModal RAG with Nvidia Investor Slide Deck](https://github.com/meta-llama/llama-recipes/blob/main/recipes/3p_integrations/togetherai/multimodal_RAG_with_nvidia_investor_slide_deck.ipynb) | Multimodal RAG using Nvidia investor slides. | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/multimodal_RAG_with_nvidia_investor_slide_deck.ipynb) [![](https://uohmivykqgnnbiouffke.supabase.co/storage/v1/object/public/landingpage/youtubebadge.svg)](https://youtu.be/IluARWPYAUc?si=gG90hqpboQgNOAYG)|
| [MultiModal RAG with Nvidia Investor Slide Deck](https://github.com/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/multimodal_RAG_with_nvidia_investor_slide_deck.ipynb) | Multimodal RAG using Nvidia investor slides. | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/multimodal_RAG_with_nvidia_investor_slide_deck.ipynb) [![](https://uohmivykqgnnbiouffke.supabase.co/storage/v1/object/public/landingpage/youtubebadge.svg)](https://youtu.be/IluARWPYAUc?si=gG90hqpboQgNOAYG)|
| [Llama Contextual RAG](./llama_contextual_RAG.ipynb) | Implementation of Contextual Retrieval using Llama models. | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/llama_contextual_RAG.ipynb) |
| [Llama PDF to podcast](./pdf_to_podcast_using_llama_on_together.ipynb) | Generate a podcast from PDF content using Llama. | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/pdf_to_podcast_using_llama_on_together.ipynb) |
| [Knowledge Graphs with Structured Outputs](./knowledge_graphs_with_structured_outputs.ipynb) | Get Llama to generate knowledge graphs. | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-cookbook/blob/main/3p-integrations/togetherai/knowledge_graphs_with_structured_outputs.ipynb) |
Expand Down
4 changes: 2 additions & 2 deletions end-to-end-use-cases/Multi-Modal-RAG/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ This is a complete workshop on how to label images using the new Llama 3.2-Visio
Before we start:

1. Please grab your HF CLI Token from [here](https://huggingface.co/settings/tokens)
2. Git clone [this dataset](https://huggingface.co/datasets/Sanyam/MM-Demo) inside the Multi-Modal-RAG folder: `git clone https://huggingface.co/datasets/Sanyam/MM-Demo` (Remember to thank the original author by upvoting [Kaggle Dataset](https://www.kaggle.com/datasets/agrigorev/clothing-dataset-full))
2. Git clone [this dataset](https://huggingface.co/datasets/Sanyam/MM-Demo) inside the Multi-Modal-RAG folder: `git clone https://huggingface.co/datasets/Sanyam/MM-Demo` (Remember to thank the original author by up voting [Kaggle Dataset](https://www.kaggle.com/datasets/agrigorev/clothing-dataset-full))
3. Make sure you grab a together.ai token [here](https://www.together.ai)

## Detailed Outline for running:
Expand Down Expand Up @@ -107,7 +107,7 @@ Note: We can further improve the description prompt. You will notice sometimes t

Credit and Thanks to List of models and resources used in the showcase:

Firstly, thanks to the author here for providing this dataset on which we base our exercise []()
Firstly, thanks to the author here for providing this dataset on which we base our exercise [here](https://www.kaggle.com/datasets/agrigorev/clothing-dataset-full)

- [Llama-3.2-11B-Vision-Instruct Model](https://www.llama.com/docs/how-to-guides/vision-capabilities/)
- [Lance-db for vector database](https://lancedb.com)
Expand Down

0 comments on commit 9564055

Please sign in to comment.