Skip to content

Commit

Permalink
Add vLLM provider
Browse files Browse the repository at this point in the history
Signed-off-by: Yuan Tang <[email protected]>
  • Loading branch information
terrytangyuan committed Oct 3, 2024
1 parent c02a90e commit 6e18080
Show file tree
Hide file tree
Showing 6 changed files with 328 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,4 @@ xcuserdata/
Package.resolved
*.pte
*.ipynb_checkpoints*
.idea
10 changes: 10 additions & 0 deletions llama_stack/distribution/templates/local-vllm-build.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
name: local-vllm
distribution_spec:
description: Use vLLM for running LLM inference
providers:
inference: remote::vllm
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda
24 changes: 24 additions & 0 deletions llama_stack/providers/adapters/inference/vllm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

from .config import DatabricksImplConfig
from .vllm import InferenceEndpointAdapter, VLLMAdapter


async def get_adapter_impl(config: DatabricksImplConfig, _deps):
assert isinstance(config, DatabricksImplConfig), f"Unexpected config type: {type(config)}"

if config.url is not None:
impl = VLLMAdapter(config)
elif config.is_inference_endpoint():
impl = InferenceEndpointAdapter(config)
else:
raise ValueError(
"Invalid configuration. Specify either an URL or HF Inference Endpoint details (namespace and endpoint name)."
)

await impl.initialize()
return impl
23 changes: 23 additions & 0 deletions llama_stack/providers/adapters/inference/vllm/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

from typing import Optional

from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field


# TODO: Any other engine configs
@json_schema_type
class VLLMImplConfig(BaseModel):
url: Optional[str] = Field(
default=None,
description="The URL for the vLLM model serving endpoint",
)
api_token: Optional[str] = Field(
default=None,
description="The API token",
)
262 changes: 262 additions & 0 deletions llama_stack/providers/adapters/inference/vllm/vllm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

from typing import AsyncGenerator

from llama_models.llama3.api.chat_format import ChatFormat

from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model

from openai import OpenAI

from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages

from .config import VLLMImplConfig

# TODO
VLLM_SUPPORTED_MODELS = {}


class VLLMInferenceAdapter(Inference):
def __init__(self, config: VLLMImplConfig) -> None:
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)

@property
def client(self) -> OpenAI:
return OpenAI(
api_key=self.config.api_token,
base_url=self.config.url
)

async def initialize(self) -> None:
return

async def shutdown(self) -> None:
pass

async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()

def _messages_to_vllm_messages(self, messages: list[Message]) -> list:
vllm_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
vllm_messages.append({"role": role, "content": message.content})

return vllm_messages

def resolve_vllm_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None
and model.descriptor(shorten_default_variant=True)
in VLLM_SUPPORTED_MODELS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(VLLM_SUPPORTED_MODELS.keys())}"

return VLLM_SUPPORTED_MODELS.get(
model.descriptor(shorten_default_variant=True)
)

def get_vllm_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
# TODO
return options

async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)

# accumulate sampling params and other options to pass to vLLM
options = self.get_vllm_chat_options(request)
vllm_model = self.resolve_vllm_model(request.model)
messages = prepare_messages(request)
model_input = self.formatter.encode_dialog_prompt(messages)

input_tokens = len(model_input.tokens)
max_new_tokens = min(
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)

print(f"Calculated max_new_tokens: {max_new_tokens}")

assert (
request.model == self.model_name
), f"Model mismatch, expected {self.model_name}, got {request.model}"

if not request.stream:
r = self.client.chat.completions.create(
model=vllm_model,
messages=self._messages_to_vllm_messages(messages),
max_tokens=max_new_tokens,
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if (
r.choices[0].finish_reason == "stop"
or r.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens

completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)

buffer = ""
ipython = False
stop_reason = None

for chunk in self.client.chat.completions.create(
model=vllm_model,
messages=self._messages_to_vllm_messages(messages),
max_tokens=max_new_tokens,
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None and chunk.choices[0].finish_reason == "stop"
) or (
stop_reason is None and chunk.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break

text = chunk.choices[0].message.content
if text is None:
continue

# check if it's a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue

if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue

buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)

yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)

# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)

for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)

yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
8 changes: 8 additions & 0 deletions llama_stack/providers/registry/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,14 @@ def available_providers() -> List[ProviderSpec]:
module="llama_stack.providers.adapters.inference.ollama",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="vllm",
pip_packages=["openai"],
module="llama_stack.providers.adapters.inference.vllm",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
Expand Down

0 comments on commit 6e18080

Please sign in to comment.