Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【mimi移植】 #1922

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 112 additions & 0 deletions mindnlp/transformers/models/mimi/configration_mimi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# mindnlp/models/mimi/configuration_mimi.py

from mindnlp.configs import MINDNLP_CONFIG_URL_BASE
from ...configuration_utils import PretrainedConfig

MINDNLP_MODEL_CONFIG_URL_BASE = MINDNLP_CONFIG_URL_BASE + "mimi/"

MIMI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"mimi-base-uncased": MINDNLP_MODEL_CONFIG_URL_BASE + "mimi-base-uncased/config.json",
}


class MimiConfig(PretrainedConfig):


def __init__(
self,
sampling_rate=24_000,
frame_rate=12.5,
audio_channels=1,
hidden_size=512,
num_filters=64,
num_residual_layers=1,
upsampling_ratios=None,
kernel_size=7,
last_kernel_size=3,
residual_kernel_size=3,
dilation_growth_rate=2,
use_causal_conv=True,
pad_mode="constant",
compress=2,
trim_right_ratio=1.0,
codebook_size=2048,
codebook_dim=256,
num_quantizers=32,
use_conv_shortcut=False,
vector_quantization_hidden_dimension=256,
num_semantic_quantizers=1,
upsample_groups=512,
num_hidden_layers=8,
intermediate_size=2048,
num_attention_heads=8,
num_key_value_heads=8,
head_dim=None,
hidden_act="gelu",
max_position_embeddings=8000,
initializer_range=0.02,
norm_eps=1e-5,
use_cache=False,
rope_theta=10000.0,
sliding_window=250,
attention_dropout=0.0,
layer_scale_initial_scale=0.01,
attention_bias=False,
**kwargs,
):
self.sampling_rate = sampling_rate
self.frame_rate = frame_rate
self.audio_channels = audio_channels
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4]
self.kernel_size = kernel_size
self.last_kernel_size = last_kernel_size
self.residual_kernel_size = residual_kernel_size
self.dilation_growth_rate = dilation_growth_rate
self.use_causal_conv = use_causal_conv
self.pad_mode = pad_mode
self.compress = compress
self.trim_right_ratio = trim_right_ratio
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size
self.num_quantizers = num_quantizers
self.use_conv_shortcut = use_conv_shortcut
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.norm_eps = norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
self.head_dim = head_dim or hidden_size // num_attention_heads
self.layer_scale_initial_scale = layer_scale_initial_scale
self.attention_bias = attention_bias

if num_semantic_quantizers >= self.num_quantizers:
raise ValueError(
f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}."
)
self.num_semantic_quantizers = num_semantic_quantizers
super().__init__(**kwargs)

@property
def encodec_frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)

@property
def num_codebooks(self) -> int:
# alias to num_quantizers
return self.num_quantizers


__all__ = ["MimiConfig"]
Loading