-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
148efe8
commit 41ad433
Showing
145 changed files
with
3,191 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
198 changes: 198 additions & 0 deletions
198
tests/diffusers_tests/pipelines/animatediff/test_animatediff_video2video_controlnet.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from ddt import data, ddt, unpack | ||
from PIL import Image | ||
from transformers import CLIPTextConfig | ||
|
||
import mindspore as ms | ||
|
||
from ..pipeline_test_utils import ( | ||
THRESHOLD_FP16, | ||
THRESHOLD_FP32, | ||
PipelineTesterMixin, | ||
get_module, | ||
get_pipeline_components, | ||
) | ||
|
||
test_cases = [ | ||
{"mode": ms.PYNATIVE_MODE, "dtype": "float32"}, | ||
{"mode": ms.PYNATIVE_MODE, "dtype": "float16"}, | ||
{"mode": ms.GRAPH_MODE, "dtype": "float32"}, | ||
{"mode": ms.GRAPH_MODE, "dtype": "float16"}, | ||
] | ||
|
||
|
||
@ddt | ||
class AnimateDiffVideoToVideoControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | ||
cross_attention_dim = 8 | ||
block_out_channels = (8, 8) | ||
|
||
pipeline_config = [ | ||
[ | ||
"unet", | ||
"diffusers.models.unets.unet_2d_condition.UNet2DConditionModel", | ||
"mindone.diffusers.models.unets.unet_2d_condition.UNet2DConditionModel", | ||
dict( | ||
block_out_channels=block_out_channels, | ||
layers_per_block=2, | ||
sample_size=8, | ||
in_channels=4, | ||
out_channels=4, | ||
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | ||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | ||
cross_attention_dim=cross_attention_dim, | ||
norm_num_groups=2, | ||
), | ||
], | ||
[ | ||
"scheduler", | ||
"diffusers.schedulers.scheduling_ddim.DDIMScheduler", | ||
"mindone.diffusers.schedulers.scheduling_ddim.DDIMScheduler", | ||
dict( | ||
beta_start=0.00085, | ||
beta_end=0.012, | ||
beta_schedule="linear", | ||
clip_sample=False, | ||
), | ||
], | ||
[ | ||
"controlnet", | ||
"diffusers.models.controlnet.ControlNetModel", | ||
"mindone.diffusers.models.controlnet.ControlNetModel", | ||
dict( | ||
block_out_channels=block_out_channels, | ||
layers_per_block=2, | ||
in_channels=4, | ||
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | ||
cross_attention_dim=cross_attention_dim, | ||
conditioning_embedding_out_channels=(8, 8), | ||
norm_num_groups=1, | ||
), | ||
], | ||
[ | ||
"vae", | ||
"diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL", | ||
"mindone.diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL", | ||
dict( | ||
block_out_channels=block_out_channels, | ||
in_channels=3, | ||
out_channels=3, | ||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | ||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | ||
latent_channels=4, | ||
norm_num_groups=2, | ||
), | ||
], | ||
[ | ||
"text_encoder", | ||
"transformers.models.clip.modeling_clip.CLIPTextModel", | ||
"mindone.transformers.models.clip.modeling_clip.CLIPTextModel", | ||
dict( | ||
config=CLIPTextConfig( | ||
bos_token_id=0, | ||
eos_token_id=2, | ||
hidden_size=cross_attention_dim, | ||
intermediate_size=37, | ||
layer_norm_eps=1e-05, | ||
num_attention_heads=4, | ||
num_hidden_layers=5, | ||
pad_token_id=1, | ||
vocab_size=1000, | ||
), | ||
), | ||
], | ||
[ | ||
"tokenizer", | ||
"transformers.models.clip.tokenization_clip.CLIPTokenizer", | ||
"transformers.models.clip.tokenization_clip.CLIPTokenizer", | ||
dict( | ||
pretrained_model_name_or_path="hf-internal-testing/tiny-random-clip", | ||
), | ||
], | ||
[ | ||
"motion_adapter", | ||
"diffusers.models.unets.unet_motion_model.MotionAdapter", | ||
"mindone.diffusers.models.unets.unet_motion_model.MotionAdapter", | ||
dict( | ||
block_out_channels=block_out_channels, | ||
motion_layers_per_block=2, | ||
motion_norm_num_groups=2, | ||
motion_num_attention_heads=4, | ||
), | ||
], | ||
] | ||
|
||
def get_dummy_components(self): | ||
components = { | ||
key: None | ||
for key in [ | ||
"unet", | ||
"controlnet", | ||
"scheduler", | ||
"vae", | ||
"motion_adapter", | ||
"text_encoder", | ||
"tokenizer", | ||
"feature_extractor", | ||
"image_encoder", | ||
] | ||
} | ||
|
||
return get_pipeline_components(components, self.pipeline_config) | ||
|
||
def get_dummy_inputs(self, num_frames: int = 2): | ||
video_height = 32 | ||
video_width = 32 | ||
video = [Image.new("RGB", (video_width, video_height))] * num_frames | ||
|
||
video_height = 32 | ||
video_width = 32 | ||
conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames | ||
|
||
inputs = { | ||
"video": video, | ||
"conditioning_frames": conditioning_frames, | ||
"prompt": "A painting of a squirrel eating a burger", | ||
"num_inference_steps": 2, | ||
"guidance_scale": 7.5, | ||
"output_type": "np", | ||
} | ||
return inputs | ||
|
||
@data(*test_cases) | ||
@unpack | ||
def test_inference(self, mode, dtype): | ||
ms.set_context(mode=mode) | ||
|
||
pt_components, ms_components = self.get_dummy_components() | ||
pt_pipe_cls = get_module( | ||
"diffusers.pipelines.animatediff.pipeline_animatediff_video2video_controlnet.AnimateDiffVideoToVideoControlNetPipeline" | ||
) | ||
ms_pipe_cls = get_module( | ||
"mindone.diffusers.pipelines.animatediff.pipeline_animatediff_video2video_controlnet.AnimateDiffVideoToVideoControlNetPipeline" | ||
) | ||
|
||
pt_pipe = pt_pipe_cls(**pt_components) | ||
ms_pipe = ms_pipe_cls(**ms_components) | ||
|
||
pt_pipe.set_progress_bar_config(disable=None) | ||
ms_pipe.set_progress_bar_config(disable=None) | ||
|
||
ms_dtype, pt_dtype = getattr(ms, dtype), getattr(torch, dtype) | ||
pt_pipe = pt_pipe.to(pt_dtype) | ||
ms_pipe = ms_pipe.to(ms_dtype) | ||
|
||
inputs = self.get_dummy_inputs() | ||
|
||
torch.manual_seed(0) | ||
pt_frame = pt_pipe(**inputs) | ||
torch.manual_seed(0) | ||
ms_frame = ms_pipe(**inputs) | ||
|
||
pt_image_slice = pt_frame.frames[0][0, -3:, -3:, -1] | ||
ms_image_slice = ms_frame[0][0][0, -3:, -3:, -1] | ||
|
||
threshold = THRESHOLD_FP32 if dtype == "float32" else THRESHOLD_FP16 | ||
assert np.max(np.linalg.norm(pt_image_slice - ms_image_slice) / np.linalg.norm(pt_image_slice)) < threshold |
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Oops, something went wrong.