Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(diffusers): update the method of loading weights #795

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions mindone/diffusers/models/model_loading_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,9 +111,9 @@ def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[
local_state = {k: v for k, v in model_to_load.parameters_and_names()}
for k, v in state_dict.items():
if k in local_state:
v.set_dtype(local_state[k].dtype)
state_dict[k] = ms.Parameter(v.to(local_state[k].dtype), name=k)
else:
pass # unexpect key keeps origin dtype
state_dict[k] = ms.Parameter(v, name=k) # unexpect key keeps origin dtype
ms.load_param_into_net(model_to_load, state_dict, strict_load=True)
return error_msgs

Expand Down
22 changes: 11 additions & 11 deletions mindone/diffusers/models/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

import mindspore as ms
from mindspore import nn, ops
from mindspore.nn.utils import no_init_parameters

from mindone.safetensors.mindspore import save_file as safe_save_file

Expand Down Expand Up @@ -61,9 +62,7 @@ def _get_pt2ms_mappings(m):
mappings = {} # pt_param_name: (ms_param_name, pt_param_to_ms_param_func)
for name, cell in m.cells_and_names():
if isinstance(cell, (nn.Conv1d, nn.Conv1dTranspose)):
mappings[f"{name}.weight"] = f"{name}.weight", lambda x: ms.Parameter(
ops.expand_dims(x, axis=-2), name=x.name
)
mappings[f"{name}.weight"] = f"{name}.weight", lambda x: ops.expand_dims(x, axis=-2)
elif isinstance(cell, nn.Embedding):
mappings[f"{name}.weight"] = f"{name}.embedding_table", lambda x: x
elif isinstance(cell, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)):
Expand Down Expand Up @@ -608,8 +607,15 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
user_agent=user_agent,
commit_hash=commit_hash,
)
with no_init_parameters():
model = cls.from_config(config, **unused_kwargs)

model = cls.from_config(config, **unused_kwargs)
if mindspore_dtype is not None and not isinstance(mindspore_dtype, ms.Type):
raise ValueError(
f"{mindspore_dtype} needs to be of type `ms.Type`, e.g. `ms.float16`, but is {type(mindspore_dtype)}."
)
elif mindspore_dtype is not None:
model = model.to(mindspore_dtype)

if is_sharded:
load_checkpoint_and_dispatch(
Expand Down Expand Up @@ -637,13 +643,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
"error_msgs": error_msgs,
}

if mindspore_dtype is not None and not isinstance(mindspore_dtype, ms.Type):
raise ValueError(
f"{mindspore_dtype} needs to be of type `ms.Type`, e.g. `ms.float16`, but is {type(mindspore_dtype)}."
)
elif mindspore_dtype is not None:
model = model.to(mindspore_dtype)

model.init_parameters_data()
model.register_to_config(_name_or_path=pretrained_model_name_or_path)

# Set model in evaluation mode to deactivate DropOut modules by default
Expand Down
2 changes: 1 addition & 1 deletion mindone/safetensors/mindspore.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ def load_file(filename: Union[str, os.PathLike]) -> Dict[str, ms.Tensor]:

def _np2ms(np_dict: Dict[str, np.ndarray]) -> Dict[str, ms.Tensor]:
for k, v in np_dict.items():
np_dict[k] = ms.Parameter(v, name=k)
np_dict[k] = ms.tensor(v)
return np_dict


Expand Down
14 changes: 8 additions & 6 deletions mindone/transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@

import mindspore as ms
from mindspore import Tensor, nn, ops
from mindspore.nn.utils import no_init_parameters

from .integrations import PeftAdapterMixin
from .modeling_attn_mask_utils import dtype_to_min
Expand All @@ -71,9 +72,7 @@ def _get_pt2ms_mappings(m):
mappings = {} # pt_param_name: (ms_param_name, pt_param_to_ms_param_func)
for name, cell in m.cells_and_names():
if isinstance(cell, (nn.Conv1d, nn.Conv1dTranspose)):
mappings[f"{name}.weight"] = f"{name}.weight", lambda x: ms.Parameter(
ops.expand_dims(x, axis=-2), name=x.name
)
mappings[f"{name}.weight"] = f"{name}.weight", lambda x: ops.expand_dims(x, axis=-2)
elif isinstance(cell, nn.Embedding):
mappings[f"{name}.weight"] = f"{name}.embedding_table", lambda x: x
elif isinstance(cell, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)):
Expand Down Expand Up @@ -294,9 +293,9 @@ def _load_state_dict_into_model(model_to_load, state_dict, start_prefix, is_shar
local_state = {start_prefix + k: v for k, v in model_to_load.parameters_and_names()}
for k, v in state_dict.items():
if k in local_state:
v.set_dtype(local_state[k].dtype)
state_dict[k] = ms.Parameter(v.to(local_state[k].dtype), name=k)
else:
pass # unexpect key keeps origin dtype
state_dict[k] = ms.Parameter(v, name=k) # unexpect key keeps origin dtype
cm = silence_mindspore_logger() if is_sharded else nullcontext()
with cm:
ms.load_param_into_net(model_to_load, state_dict, strict_load=True)
Expand Down Expand Up @@ -1730,7 +1729,8 @@ def from_pretrained(

config.name_or_path = pretrained_model_name_or_path
config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained.
model = cls(config, *model_args, **model_kwargs)
with no_init_parameters():
model = cls(config, *model_args, **model_kwargs)
# We cannot set default mindspore dtype. So we need to cast model weights after creating.
if mindspore_dtype is not None:
model = model.to(mindspore_dtype)
Expand Down Expand Up @@ -1775,6 +1775,8 @@ def from_pretrained(
adapter_kwargs=adapter_kwargs,
)

model.init_parameters_data()

# Set model in evaluation mode to deactivate DropOut modules by default
model.set_train(False)

Expand Down