GSVB is software for scalable group sparse regression.
Unlike other state-of-the-art group selection methods, GSVB provides scalable uncertainty quantification (~100x times faster than MCMC)
Currently GSVB is available for the Linear, Logistic and Poisson models.
devtools::install_github("mkomod/gsvb")
library(gsvb)
n <- 100
p <- 1000
gsize <- 5
groups <- c(rep(1:(p/gsize), each=gsize))
X <- matrix(rnorm(n * p), nrow=n, ncol=p)
b <- c(rep(0, gsize), rep(-4, gsize), rep(8, gsize), rep(0, p - 3 * gsize))
y <- X %*% b + rnorm(n, 0, 1)
f <- gsvb.fit(y, X, groups)
plot(f$beta_hat, col=4, ylab=expression(hat(beta)))
points(b, pch=20)
GSVB computes a variational approximation the full group sparse posterior. The prior used for the model coefficients is
where
Under this prior sparsity is imposed via the Dirac mass which sets the entire group to zero when
Full details are available at https://arxiv.org/abs/2309.10378