Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MLCube implementation for Stable Diffusion #696

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions stable_diffusion/.dockerignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
nogit/
mlperf_compliance.log
mlcube/workspace/*
1 change: 1 addition & 0 deletions stable_diffusion/.gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
nogit/
mlperf_compliance.log
mlcube/workspace/*
31 changes: 25 additions & 6 deletions stable_diffusion/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,13 +1,32 @@
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:22.12-py3
ARG FROM_IMAGE_NAME=pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel
FROM ${FROM_IMAGE_NAME}

ENV DEBIAN_FRONTEND=noninteractive

# apt dependencies
RUN apt-get update
RUN apt-get install -y ffmpeg libsm6 libxext6
RUN echo 'debconf debconf/frontend select Noninteractive' | debconf-set-selections
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
RUN apt-get update && apt-get install -y
RUN apt-get install -y ffmpeg libsm6 libxext6 git wget unzip \
build-essential \
libomp-dev

# pip dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install pytorch_lightning==1.9.0
RUN pip uninstall opencv-python==4.7.0.72 -y
RUN rm -rf /usr/local/lib/python3.8/dist-packages/cv2/
RUN pip install opencv-python==4.8.0.74
RUN pip install numpy==1.26.4
RUN pip install httpx==0.24.1
# RUN pip install --upgrade pip setuptools wheel
RUN pip install fastapi==0.115.6
RUN pip install starlette==0.45.2
RUN pip install jinja2==2.11.3
RUN pip install triton==3.1.0

# install LDM
COPY . /diffusion
RUN cd /diffusion && \
pip install --no-cache-dir -r requirements.txt
ADD . /diffusion
RUN chmod +x /diffusion/*.sh
WORKDIR /diffusion
153 changes: 153 additions & 0 deletions stable_diffusion/configs/train_01x01.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
model:
base_learning_rate: 1.25e-7
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: npy
first_stage_type: moments
cond_stage_key: txt
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: steps
scale_factor: 0.18215
use_ema: False

load_vae: True
load_unet: False
load_encoder: True

validation_config:
sampler: "ddim" # plms, ddim, dpm
steps: 50
scale: 8.0
ddim_eta: 0.0
prompt_key: "caption"
image_fname_key: "image_id"

save_images:
enabled: False
base_output_dir: "/results/inference"
fid:
enabled: True
inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
cache_dir: /checkpoints/inception
gt_path: /datasets/coco2014/val2014_512x512_30k_stats.npz
clip:
enabled: True
clip_version: "ViT-H-14"
cache_dir: /checkpoints/clip

scheduler_config:
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]

unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: False # gradient checkpointing
use_fp16: True
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False

first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
arch: "ViT-H-14"
version: "laion2b_s32b_b79k"
freeze: True
layer: "penultimate"
cache_dir: /checkpoints/clip

data:
target: ldm.data.composable_data_module.ComposableDataModule
params:
train:
target: ldm.data.webdatasets.build_dataloader
params:
urls: /datasets/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
batch_size: 8
shuffle: 1000
partial: False
keep_only_keys: ["npy", "txt"]
num_workers: 4
persistent_workers: True

validation:
target: ldm.data.tsv.build_dataloader
params:
annotations_file: "/datasets/coco2014/val2014_30k.tsv"
keys: ["image_id", "id", "caption"]
batch_size: 8
shuffle: False
num_workers: 1

lightning:
trainer:
accelerator: 'gpu'
num_nodes: 1
devices: 8
precision: 16
logger: False
log_every_n_steps: 10
enable_progress_bar: False
max_epochs: 1
max_steps: 1
val_check_interval: 1
enable_checkpointing: True
num_sanity_val_steps: 0
strategy:
target: strategies.DDPStrategy
params:
find_unused_parameters: False

modelcheckpoint:
target: lightning.pytorch.callbacks.ModelCheckpoint
params:
save_top_k: -1
every_n_train_steps: 1000000000000
153 changes: 153 additions & 0 deletions stable_diffusion/configs/train_demo.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
model:
base_learning_rate: 1.25e-7
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: npy
first_stage_type: moments
cond_stage_key: txt
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: steps
scale_factor: 0.18215
use_ema: False

load_vae: True
load_unet: False
load_encoder: True

validation_config:
sampler: "ddim" # plms, ddim, dpm
steps: 10
scale: 8.0
ddim_eta: 0.0
prompt_key: "caption"
image_fname_key: "image_id"

save_images:
enabled: True
base_output_dir: "/results/inference"
fid:
enabled: True
inception_weights_url: https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth
cache_dir: /checkpoints/inception
gt_path: /datasets/coco2014/val2014_512x512_30k_stats.npz
clip:
enabled: True
clip_version: "ViT-H-14"
cache_dir: /checkpoints/clip

scheduler_config:
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 100 ]
cycle_lengths: [ 100 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]

unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: False # gradient checkpointing
use_fp16: True
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False

first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
arch: "ViT-H-14"
version: "laion2b_s32b_b79k"
freeze: True
layer: "penultimate"
cache_dir: /checkpoints/clip

data:
target: ldm.data.composable_data_module.ComposableDataModule
params:
train:
target: ldm.data.webdatasets.build_dataloader
params:
urls: /datasets/laion-400m/webdataset-moments-filtered/{00000..00831}.tar
batch_size: 8
shuffle: 1000
partial: False
keep_only_keys: ["npy", "txt"]
num_workers: 4
persistent_workers: True

validation:
target: ldm.data.tsv.build_dataloader
params:
annotations_file: "/datasets/coco2014/val2014_30k.tsv"
keys: ["image_id", "id", "caption"]
batch_size: 8
shuffle: False
num_workers: 1

lightning:
trainer:
accelerator: 'gpu'
num_nodes: 1
devices: 8
precision: 16
logger: False
log_every_n_steps: 2
enable_progress_bar: False
max_epochs: 2
max_steps: 2
val_check_interval: 1
enable_checkpointing: True
num_sanity_val_steps: 0
strategy:
target: strategies.DDPStrategy
params:
find_unused_parameters: False

modelcheckpoint:
target: lightning.pytorch.callbacks.ModelCheckpoint
params:
save_top_k: 1
every_n_train_steps: 1
2 changes: 0 additions & 2 deletions stable_diffusion/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -703,7 +703,5 @@ def divein(*args, **kwargs):
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
if trainer.global_rank == 0:
print(trainer.profiler.summary())

mllogger.event(mllog_constants.STATUS, value=status)
Loading
Loading