-
Notifications
You must be signed in to change notification settings - Fork 192
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# Copyright (c) 2025, Manfred Moitzi | ||
# License: MIT License | ||
import math | ||
from pathlib import Path | ||
import numpy as np | ||
|
||
import ezdxf | ||
from ezdxf.math import BSpline | ||
from ezdxf.math.linalg import binomial_coefficient | ||
|
||
OUTBOX = Path("~/Desktop/Outbox").expanduser() | ||
if not OUTBOX.exists(): | ||
OUTBOX = Path(".") | ||
|
||
CONTROL_POINTS = [(0, 0), (1, -1), (2, 0), (3, 2), (4, 0), (5, -2)] | ||
|
||
|
||
def degree_elevation(spline: BSpline, times: int) -> BSpline: | ||
# Piegl & Tiller: Algorithm A5.9 | ||
# Degree elevate a curve t times | ||
# n: count of control points | ||
# p: degree of B-spline | ||
# Pw control points | ||
# U: knot vector | ||
t = int(times) | ||
if t < 1: | ||
return spline | ||
|
||
p = spline.degree | ||
Pw = np.array(spline.control_points) | ||
U = np.array(spline.knots()) | ||
n = len(Pw) | ||
m = n + p + 1 | ||
assert m == len(U) | ||
ph = p + t | ||
ph2 = ph // 2 | ||
|
||
# control points of the elevated B-spline | ||
Qw = np.zeros(shape=(n * (2 + t), 3)) # size not known yet??? | ||
|
||
# knot vector of the elevated B-spline | ||
Uh = np.zeros(m * (2 + t)) # size not known yet??? | ||
|
||
# coefficients for degree elevating the Bezier segments | ||
bezalfs = np.zeros(shape=(p + t + 1, p + 1)) | ||
|
||
# This algorithm run for each axis: x, y, z | ||
# Bezier control points of the current segment | ||
bpts = np.zeros(shape=(p + 1, 3)) | ||
|
||
# (p+t)th-degree Bezier control points of the current segment | ||
ebpts = np.zeros(shape=(p + t + 1, 3)) | ||
|
||
# leftmost control points of the next Bezier segment | ||
Nextbpts = np.zeros(shape=(p - 1, 3)) | ||
|
||
# knot insertion alphas | ||
alfs = np.zeros(p - 1) | ||
bezalfs[0, 0] = 1.0 | ||
bezalfs[ph, p] = 1.0 | ||
for i in range(1, ph2 + 1): | ||
inv = 1.0 / binomial_coefficient(ph, i) | ||
mpi = min(p, i) | ||
for j in range(max(0, i - t), mpi + 1): | ||
bezalfs[i, j] = ( | ||
inv * binomial_coefficient(p, j) * binomial_coefficient(t, i - j) | ||
) | ||
for i in range(ph2 + 1, ph): | ||
mpi = min(p, i) | ||
for j in range(max(0, i - t), mpi + 1): | ||
bezalfs[i, j] = bezalfs[ph - i, p - j] | ||
mh = ph | ||
kind = ph + 1 | ||
r = -1 | ||
a = p | ||
b = p + 1 | ||
cind = 1 | ||
ua = U[0] | ||
Qw[0] = Pw[0] | ||
for i in range(0, ph + 1): | ||
Uh[i] = ua | ||
|
||
for i in range(0, p + 1): | ||
bpts[i] = Pw[i] # initialize first Bezier segment | ||
|
||
while b < m: # big loop thru knot vector | ||
i = b | ||
# Index Error here for: while (b < m) and ... | ||
while (b < m - 1) and (math.isclose(U[b], U[b + 1])): | ||
b = b + 1 | ||
mul = b - i + 1 | ||
mh = mh + mul + t | ||
ub = U[b] | ||
oldr = r | ||
r = p - mul | ||
# insert knot u(b) r-times | ||
if oldr > 0: | ||
lbz = (oldr + 2) // 2 | ||
else: | ||
lbz = 1 | ||
if r > 0: | ||
rbz = ph - (r + 1) // 2 | ||
else: | ||
rbz = ph | ||
if r > 0: | ||
# insert knot to get Bezier segment | ||
numer = ub - ua | ||
for k in range(p, mul, -1): | ||
alfs[k - mul - 1] = numer / (U[a + k] - ua) | ||
for j in range(1, r + 1): | ||
save = r - j | ||
s = mul + j | ||
for k in range(p, s - 1, -1): | ||
bpts[k] = alfs[k - s] * bpts[k] + (1.0 - alfs[k - s]) * bpts[k - 1] | ||
Nextbpts[save] = bpts[p] | ||
# end of insert knot | ||
for i in range(lbz, ph + 1): | ||
# degree elevate bezier | ||
# only points lbz, .. ,ph are used below | ||
ebpts[i] = 0.0 | ||
mpi = min(p, i) | ||
for j in range(max(0, i - t), mpi + 1): | ||
ebpts[i] = ebpts[i] + bezalfs[i, j] * bpts[j] | ||
# end degree elevate bezier | ||
if oldr > 1: | ||
# must remove knot u=U[a] oldr times | ||
first = kind - 2 | ||
last = kind | ||
den = ub - ua | ||
bet = (ub - Uh[kind - 1]) / den | ||
for tr in range(1, oldr): | ||
# knoit removal loop | ||
i = first | ||
j = last | ||
kj = j - kind + 1 | ||
while j - i > tr: | ||
# loop and compute new control points for one removal step | ||
if i < cind: | ||
alf = (ub - Uh[i]) / (ua - Uh[i]) | ||
Qw[i] = alf * Qw[i] + (1.0 - alf) * Qw[i - 1] | ||
if j > lbz: | ||
if j - tr <= kind - ph + oldr: | ||
gam = (ub - Uh[j - tr]) / den | ||
ebpts[kj] = gam * ebpts[kj] + (1.0 - gam) * ebpts[kj + 1] | ||
else: | ||
ebpts[kj] = bet * ebpts[kj] + (1.0 - bet) * ebpts[kj + 1] | ||
i = i + 1 | ||
j = j - 1 | ||
kj = kj - 1 | ||
# end of removing knot, u=U[a] | ||
if a != p: | ||
# load the knot ua | ||
for i in range(0, ph - oldr): | ||
Uh[kind] = ua | ||
kind = kind + 1 | ||
for j in range(lbz, rbz + 1): | ||
# load control points into Qw | ||
Qw[cind] = ebpts[j] | ||
cind = cind + 1 | ||
if b < m: | ||
# set up for next pass thru loop | ||
for j in range(0, r): | ||
bpts[j] = Nextbpts[j] | ||
# Index Error here: | ||
for j in range(r, p + 1): | ||
bpts[j] = Pw[b - p + j] | ||
a = b | ||
b = b + 1 | ||
ua = ub | ||
else: # end knot | ||
for i in range(0, ph + 1): | ||
Uh[kind + i] = ub | ||
|
||
# nh ... new count of control points | ||
nh = mh - ph - 1 | ||
# TODO: weights? | ||
return BSpline(Qw[:nh], order=ph + 1, knots=Uh[: mh + ph + 1]) | ||
|
||
|
||
def test_algorithm_runs(): | ||
spline = BSpline(CONTROL_POINTS) | ||
result = degree_elevation(spline, 1) | ||
|
||
assert result.degree == 4 | ||
|
||
|
||
def export_splines(): | ||
spline = BSpline(CONTROL_POINTS) | ||
# result = degree_elevation(spline, 1) | ||
result = spline | ||
|
||
doc = ezdxf.new() | ||
msp = doc.modelspace() | ||
s1 = msp.add_spline(dxfattribs={"layer": "original", "color": 1}) | ||
s2 = msp.add_spline(dxfattribs={"layer": "elevated", "color": 2}) | ||
s1.apply_construction_tool(spline) | ||
s2.apply_construction_tool(result) | ||
doc.saveas(OUTBOX / "degree_elevation.dxf") | ||
|
||
|
||
if __name__ == "__main__": | ||
export_splines() | ||
|