Skip to content

Commit

Permalink
[REF] Reorganization of plotting
Browse files Browse the repository at this point in the history
Including outline for behavioral PLS plotting
  • Loading branch information
rmarkello committed Dec 10, 2018
1 parent f48b1f8 commit 40d1cab
Show file tree
Hide file tree
Showing 4 changed files with 213 additions and 133 deletions.
4 changes: 2 additions & 2 deletions pyls/plotting/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# -*- coding: utf-8 -*-

__all__ = ['meancentered']
__all__ = ['behavioral', 'meancentered']

from . import meancentered
from . import behavioral, meancentered
57 changes: 57 additions & 0 deletions pyls/plotting/behavioral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# -*- coding: utf-8 -*-
"""
Functions for plotting results from a behavioral PLS
"""

from .meancentered import plot_contrast


def plot_behaviors(results, lv=0, behaviors=None, cond_labels=None,
group_labels=None, cond_order=None, error_kws=None,
legend=True, **kwargs):
"""
Plots group / condition contrast from `results` for a provided `lv`
Parameters
----------
results : :obj:pyls.PLSResults
The PLS result dictionary
lv : int, optional
Index of desired latent variable to plot. Uses zero-indexing, so the
first latent variable is `lv=0`. Default: 0
behaviors : list, optional
Labels for behaviors (i.e., columns in `Y` matrix provided to original
PLS). If not specified, will check if `Y` matrix was a pandas.DataFrame
and use columns labels; if not, will default to "Behavior X". Default:
None
cond_labels : list, optional
List of condition labels as they were supplied to the original PLS.
If not supplied, uses "Condition X" as label. Default: None
group_labels : list, optional
List of group labels as they were supplied to the original PLS. If
not supplied, uses "Group X" as label. Default: None
cond_order : list, optional
Desired order for plotting conditions. If not supplied, plots
conditions in order they were provided to original PLS. Default: None
error_kws : dict, optional
Dictionary supplying keyword arguments for errorbar plotting. Default:
None
legend : bool, optional
Whether to plot legend automatically. Default: True
**kwargs : key, value mappings
Keywords arguments passed to :obj:seaborn.barplot
Returns
-------
ax : matplotlib.axes.Axis
A matplotlib axes object for saving or modifying
"""

ax = plot_contrast(results, lv=lv, cond_labels=cond_labels,
group_labels=group_labels, cond_order=cond_order,
error_kws=error_kws, legend=legend, **kwargs)

if behaviors is not None:
ax.set_xlabels(behaviors)

return ax
147 changes: 16 additions & 131 deletions pyls/plotting/meancentered.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,134 +4,8 @@
"""

import numpy as np
import pandas as pd
import seaborn as sns


def _set_group_lvls(n_conds, n_grps, grp_lvls=None):
"""
Derives a pandas data series of group labels
Parameters
----------
n_conds : int
Number of conditions in the analysis
n_grps : int
Number of groups in the analysis
grp_lvls : list, optional
List of group labels
Returns
-------
labels : pd.Series
Series of group labels aligned to the input data structure
"""

grping = []
if grp_lvls is None:
for i in range(n_grps):
grping += ["Group " + str(i)] * n_conds
else:
for i in range(n_grps):
grping.extend([grp_lvls[i]] * n_conds)
return pd.Series(grping, name='Group')


def _set_cond_lvls(n_conds, n_grps, cond_lvls=None):
"""
Derives a pandas series of condition labels
Parameters
----------
n_conds : int
Number of conditions in the analysis
n_grps : int
Number of groups in the analysis
cond_lvls : list, optional
List of condition labels
Returns
-------
labels : pd.Series
Series of condition labels aligned to the input data structure
"""

if cond_lvls is None:
cond_lvls = ["Condition " + str(i) for i in range(n_conds)] * n_grps
else:
cond_lvls = cond_lvls * n_grps

return pd.Series(cond_lvls, name='Condition')


def _define_vars(results, cond_lvls=None, grp_lvls=None):
"""
Create a pandas data frame from `results` for easy plotting
Uses the result dictionary returned by PLS as well as user-supplied
condition and group label(s).
Parameters
----------
results : :obj:pyls.PLSResults
The PLS result dictionary
cond_lvls : list, optional
List of condition labels
grp_lvls : list, optional
List of group labels
Returns
-------
df : pd.DataFrame
A pandas DataFrame with derived estimates (and upper- and lower-
estimated error) for all latent variables
"""

estimate = results.bootres.contrast
ul = results.bootres.contrast_uplim
ll = results.bootres.contrast_lolim

n_grps = len(results.inputs.groups)
n_conds = estimate.shape[1] // n_grps
cond = _set_cond_lvls(n_conds, n_grps, cond_lvls=cond_lvls)
grp = _set_group_lvls(n_conds, n_grps, grp_lvls=grp_lvls)

num_est = estimate.shape[1] + 1 # for 1-based indexing in plots
colnames = []
for itm in ['Estimate LV', 'UL LV', 'LL LV']:
for i in range(1, num_est):
colnames.append(itm + str(i))

df = pd.DataFrame(np.hstack((estimate, ul, ll)), columns=colnames)
df = pd.concat([df, cond, grp], axis=1)
return df


def _rearrange_df(df, plot_order):
"""
Rearranged `df` according to `plot_order`
In examining plots, users may wish to rearrange the order in which
conditions are presented in order to ease visual interpretation. This
function reorders the dataframe as desired
Parameters
----------
df : pandas.DataFrame
Dataframe containing condition, group labels, and PLS results
plot_order : list
User-defined order in which to plot conditions
Returns
-------
df : pd.DataFrame
Provided dataframe `df` with re-ordered conditions
"""

sorter_idx = dict(zip(plot_order, range(len(plot_order))))
df['Cond_Arrange'] = df['Condition'].map(sorter_idx)
df = df.sort_values(by=['Group', 'Cond_Arrange'], ascending=[False, True])
return df.drop(columns=['Cond_Arrange'])
from .utils import _define_vars, _rearrange_df


def plot_contrast(results, lv=0, cond_labels=None, group_labels=None,
Expand All @@ -156,7 +30,7 @@ def plot_contrast(results, lv=0, cond_labels=None, group_labels=None,
Desired order for plotting conditions. If not supplied, plots
conditions in order they were provided to original PLS. Default: None
error_kws : dict, optional
Dictionary supplying key-word arguments to errorbar plotting. Default:
Dictionary supplying keyword arguments for errorbar plotting. Default:
None
legend : bool, optional
Whether to plot legend automatically. Default: True
Expand All @@ -171,15 +45,26 @@ def plot_contrast(results, lv=0, cond_labels=None, group_labels=None,

error_opts = dict(fmt='none', ecolor='black')
if error_kws is not None:
if not isinstance(error_kws, dict):
raise TypeError('Provided error_kws must be a dictionary, not a '
'{}. Please check inputs and try again.'
.format(type(error_kws)))
error_opts.update(**error_kws)

df = _define_vars(results, cond_lvls=cond_labels, grp_lvls=group_labels)
if cond_order is not None:
diff_cond = set(cond_order) - set(cond_labels)
if len(diff_cond) > 0:
raise ValueError('Provided cond_order had labels not provided in '
'cond_labels: {}'.format(list(diff_cond)))
df = _rearrange_df(df, cond_order)

num_sig = (len(df.columns) - 2) // 3
ax = sns.barplot(x="Group", y=df[df.columns[lv]], hue="Condition",
data=df, capsize=0.1, errwidth=1.25, alpha=0.25, ci=None,
**kwargs)
barplot_opts = dict(capsize=0.1, errwidth=1.25, alpha=0.25, ci=None)
if len(kwargs) > 0:
barplot_opts.update(**kwargs)
ax = sns.barplot(x='Group', y=df[df.columns[lv]], hue='Condition',
data=df, **barplot_opts)
if legend:
ax.legend(bbox_to_anchor=(1.1, 1.05))
else:
Expand Down
138 changes: 138 additions & 0 deletions pyls/plotting/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# -*- coding: utf-8 -*-
"""
Utilities for plotting functions
"""

import numpy as np
import pandas as pd


def _set_group_lvls(n_conds, n_grps, grp_lvls=None):
"""
Derives a pandas data series of group labels
Parameters
----------
n_conds : int
Number of conditions in the analysis
n_grps : int
Number of groups in the analysis
grp_lvls : list, optional
List of group labels
Returns
-------
labels : pd.Series
Series of group labels aligned to the input data structure
"""

grping = []
if grp_lvls is None:
for i in range(n_grps):
grping += ['Group ' + str(i)] * n_conds
else:
for i in range(n_grps):
grping.extend([grp_lvls[i]] * n_conds)
return pd.Series(grping, name='Group')


def _set_cond_lvls(n_conds, n_grps, cond_lvls=None):
"""
Derives a pandas series of condition labels
Parameters
----------
n_conds : int
Number of conditions in the analysis
n_grps : int
Number of groups in the analysis
cond_lvls : list, optional
List of condition labels
Returns
-------
labels : pd.Series
Series of condition labels aligned to the input data structure
"""

if cond_lvls is None:
cond_lvls = ['Condition ' + str(i) for i in range(n_conds)] * n_grps
else:
cond_lvls = cond_lvls * n_grps

return pd.Series(cond_lvls, name='Condition')


def _define_vars(results, cond_lvls=None, grp_lvls=None):
"""
Create a pandas data frame from `results` for easy plotting
Uses the result dictionary returned by PLS as well as user-supplied
condition and group label(s).
Parameters
----------
results : :obj:pyls.PLSResults
The PLS result dictionary
cond_lvls : list, optional
List of condition labels
grp_lvls : list, optional
List of group labels
Returns
-------
df : pd.DataFrame
A pandas DataFrame with derived estimates (and upper- and lower-
estimated error) for all latent variables
"""

try:
estimate = results.bootres.contrast
ul = results.bootres.contrast_uplim
ll = results.bootres.contrast_lolim
except AttributeError:
estimate = results.bootres.behavcorr
ul = results.bootres.behavcorr_uplim
ll = results.bootres.behavcorr_lolim

n_grps = len(results.inputs.groups)
n_conds = estimate.shape[1] // n_grps
cond = _set_cond_lvls(n_conds, n_grps, cond_lvls=cond_lvls)
grp = _set_group_lvls(n_conds, n_grps, grp_lvls=grp_lvls)

num_est = estimate.shape[1] + 1 # for 1-based indexing in plots
colnames = []
for itm in ['Estimate LV', 'UL LV', 'LL LV']:
for i in range(1, num_est):
colnames.append(itm + str(i))

df = pd.DataFrame(np.hstack((estimate, ul, ll)), columns=colnames)
df = pd.concat([df, cond, grp], axis=1)
return df


def _rearrange_df(df, plot_order):
"""
Rearranged `df` according to `plot_order`
In examining plots, users may wish to rearrange the order in which
conditions are presented in order to ease visual interpretation. This
function reorders the dataframe as desired
Parameters
----------
df : pandas.DataFrame
Dataframe containing condition, group labels, and PLS results
plot_order : list
User-defined order in which to plot conditions
Returns
-------
df : pd.DataFrame
Provided dataframe `df` with re-ordered conditions
"""

sorter_idx = dict(zip(plot_order, range(len(plot_order))))
df['Cond_Arrange'] = df['Condition'].map(sorter_idx)
df = df.sort_values(by=['Group', 'Cond_Arrange'], ascending=[False, True])
return df.drop(columns=['Cond_Arrange'])

0 comments on commit 40d1cab

Please sign in to comment.