Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ClearML integration #2197

Merged
merged 10 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@
"GPUtil>=1.4.0",
"protobuf>=3.12.2,<=3.20.3",
"click>=7.1.2,!=8.0.0", # latest version < 8.0 + blocked version with reported bug
"clearml==1.14.4",
]
_nm_deps = [f"{'sparsezoo' if is_release else 'sparsezoo-nightly'}~={version_nm_deps}"]
_deepsparse_deps = [
Expand Down
105 changes: 105 additions & 0 deletions src/sparseml/pytorch/utils/logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,11 +45,21 @@
wandb = None
wandb_err = err


try:
from clearml import Task

clearml_err = None
except Exception as err:
clearml = None
clearml_err = err

from sparseml.utils import ALL_TOKEN, create_dirs


__all__ = [
"BaseLogger",
"ClearMLLogger",
"LambdaLogger",
"PythonLogger",
"TensorBoardLogger",
Expand Down Expand Up @@ -628,6 +638,101 @@ def save(
return True


class ClearMLLogger(LambdaLogger):
@staticmethod
def available() -> bool:
"""
:return: True if wandb is available and installed, False, otherwise
"""
return not clearml_err

def __init__(
self,
name: str = "clearml",
enabled: bool = True,
project_name: str = "sparseml",
task_name: str = "",
):
if task_name == "":
now = datetime.now()
task_name = now.strftime("%d-%m-%Y_%H.%M.%S")

self.task = Task.init(project_name=project_name, task_name=task_name)

super().__init__(
lambda_func=self.log_scalar,
name=name,
enabled=enabled,
)

def log_hyperparams(
self,
params: Dict,
level: Optional[int] = None,
) -> bool:
"""
:param params: Each key-value pair in the dictionary is the name of the
hyper parameter and it's corresponding value.
:return: True if logged, False otherwise.
"""
if not self.enabled:
return False

self.task.connect(params)
return True

def log_scalar(
self,
tag: str,
value: float,
step: Optional[int] = None,
wall_time: Optional[float] = None,
level: Optional[int] = None,
) -> bool:
"""
:param tag: identifying tag to log the value with
:param value: value to save
:param step: global step for when the value was taken
:param wall_time: global wall time for when the value was taken,
defaults to time.time()
:param kwargs: additional logging arguments to support Python and custom loggers
:return: True if logged, False otherwise.
"""
logger = self.task.get_logger()
# each series is superimposed on the same plot on title
logger.report_scalar(
title=tag, series=str(level) or tag, value=value, iteration=step
)
return True

def log_scalars(
self,
tag: str,
values: Dict[str, float],
step: Optional[int] = None,
wall_time: Optional[float] = None,
level: Optional[int] = None,
) -> bool:
"""
:param tag: identifying tag to log the values with
:param values: values to save
:param step: global step for when the values were taken
:param wall_time: global wall time for when the values were taken,
defaults to time.time()
:param kwargs: additional logging arguments to support Python and custom loggers
:return: True if logged, False otherwise.
"""
for k, v in values.items():
self.log_scalar(
tag=f"{tag}.{k}",
value=v,
step=step,
wall_time=wall_time,
level=level,
)
return True


class SparsificationGroupLogger(BaseLogger):
"""
Modifier logger that handles outputting values to other supported systems.
Expand Down
8 changes: 5 additions & 3 deletions tests/sparseml/pytorch/utils/test_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import pytest

from sparseml.pytorch.utils import (
ClearMLLogger,
LambdaLogger,
LoggerManager,
PythonLogger,
Expand All @@ -45,6 +46,7 @@
or True
),
*([WANDBLogger()] if WANDBLogger.available() else []),
*([ClearMLLogger()] if ClearMLLogger.available() else []),
SparsificationGroupLogger(
lambda_func=lambda tag, value, values, step, wall_time, level: logging.info(
f"{tag}, {value}, {values}, {step}, {wall_time}, {level}"
Expand Down Expand Up @@ -79,12 +81,12 @@ def test_log_scalar(self, logger):

def test_log_scalars(self, logger):
logger.log_scalars("test-scalars-tag", {"scalar1": 0.0, "scalar2": 1.0})
logger.log_scalars("test-scalars-tag", {"scalar1": 0.0, "scalar2": 1.0}, 1)
logger.log_scalars("test-scalars-tag2", {"scalar1": 0.0, "scalar2": 1.0}, 1)
logger.log_scalars(
"test-scalars-tag", {"scalar1": 0.0, "scalar2": 1.0}, 2, time.time() - 1
"test-scalars-tag3", {"scalar1": 0.0, "scalar2": 1.0}, 2, time.time() - 1
)
logger.log_scalars(
"test-scalars-tag",
"test-scalars-tag4",
{"scalar1": 0.0, "scalar2": 1.0},
2,
time.time() - 1,
Expand Down
63 changes: 63 additions & 0 deletions tests/sparseml/test_clear_ml.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path

from clearml import Task
from sparseml.transformers import apply
from sparseml.utils import is_package_available


is_torch_available = is_package_available("torch")
if is_torch_available:
import torch

torch_err = None
else:
torch = object
torch_err = ModuleNotFoundError(
"`torch` is not installed, use `pip install torch` to log to Weights and Biases"
)


def test_oneshot_and_finetune(tmp_path: Path):
recipe_str = "tests/sparseml/transformers/finetune/test_alternate_recipe.yaml"
model = "Xenova/llama2.c-stories15M"
device = "cuda:0"
if is_torch_available and not torch.cuda.is_available():
device = "cpu"
dataset = "wikitext"
dataset_config_name = "wikitext-2-raw-v1"
concatenate_data = True
run_stages = True
output_dir = tmp_path
max_steps = 50
splits = {"train": "train[:50%]", "calibration": "train[50%:60%]"}

# clearML will automatically log default capturing entries without
# explicitly calling logger. Logs accessible in https://app.clear.ml/
Task.init(project_name="test", task_name="test_oneshot_and_finetune")

apply(
model=model,
dataset=dataset,
dataset_config_name=dataset_config_name,
run_stages=run_stages,
output_dir=output_dir,
recipe=recipe_str,
max_steps=max_steps,
concatenate_data=concatenate_data,
splits=splits,
oneshot_device=device,
)
Loading