Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Quantization Logging to New Framework #2313

Merged
merged 8 commits into from
Jun 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 9 additions & 22 deletions src/sparseml/pytorch/utils/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
import os
import random
import re
import warnings
from collections import OrderedDict, namedtuple
from contextlib import contextmanager
from copy import deepcopy
Expand All @@ -30,7 +29,7 @@
import torch
from packaging import version
from torch import Tensor
from torch.nn import Linear, Module, Parameter
from torch.nn import Embedding, Linear, Module, Parameter
from torch.nn.modules.conv import Conv2d, Conv3d, _ConvNd
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
Expand Down Expand Up @@ -780,6 +779,7 @@ def get_prunable_layers(module: Module) -> List[Tuple[str, Module]]:
for (name, mod) in module.named_modules()
if (
isinstance(mod, Linear)
or isinstance(mod, Embedding)
or isinstance(mod, _ConvNd)
or (QATLinear and isinstance(mod, QATLinear))
or (QATConv2d and isinstance(mod, QATConv2d))
Expand All @@ -793,7 +793,7 @@ def get_quantizable_layers(module: Module) -> List[Tuple[str, Module]]:
"""
:param module: the module to get the quantizable layers from
:return: a list containing the names and modules of the quantizable layers
(Linear, Conv2d, Conv3d)
(Embedding, Linear, Conv2d, Conv3d)
"""
if QATLinear is None:
raise ImportError(
Expand All @@ -806,6 +806,7 @@ def get_quantizable_layers(module: Module) -> List[Tuple[str, Module]]:
for (name, mod) in module.named_modules()
if (
isinstance(mod, Linear)
or isinstance(mod, Embedding)
or isinstance(mod, Conv2d)
or (QATConv3d and isinstance(mod, Conv3d))
)
Expand All @@ -816,29 +817,15 @@ def get_quantized_layers(module: Module) -> List[Tuple[str, Module]]:
"""
:param module: the module to get the quantized layers from
:return: a list containing the names and modules of the quantized layers
(Linear, Conv2d, Conv3d)
(Embedding, Linear, Conv2d, Conv3d)
"""
if QATLinear is None:
raise ImportError(
"PyTorch version is not setup for Quantization. "
"Please install a QAT compatible version of PyTorch"
)

quantized_layers = []
for (name, mod) in module.named_modules():
if (
(QATLinear and isinstance(mod, QATLinear))
or (QATConv2d and isinstance(mod, QATConv2d))
or (QATConv3d and isinstance(mod, QATConv3d))
):
quantized_layers.append((name, mod))

elif isinstance(mod, Conv3d) and not QATConv3d:
warnings.warn(
"Pytorch version is not setup for Conv3D Quantization. "
"Quantization of Conv3D layers will be skipped",
UserWarning,
)
if hasattr(mod, "quantization_scheme"):
weight_scheme = getattr(mod.quantization_scheme, "weights", None)
if weight_scheme is not None and hasattr(mod, "weight"):
quantized_layers.append((name, mod))

return quantized_layers

Expand Down
11 changes: 9 additions & 2 deletions src/sparseml/transformers/finetune/session_mixin.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,15 +500,22 @@ def log_model_sparsification(self):
f"Sparsification info for {type(self.model).__name__}: "
f"{sparsification_info.params_total} total params. "
)
sparsity_percent_formatted = "{:.2f}".format(
sparsification_info.params_prunable_sparse_percent
)
_LOGGER.info(
f"There are {sparsification_info.params_prunable_total} prunable "
f"params which have {sparsification_info.params_prunable_sparse_percent} "
f"params which have {sparsity_percent_formatted}% "
"avg sparsity."
)

quant_percent_formatted = "{:.2f}".format(
sparsification_info.params_quantized_percent
)
_LOGGER.info(
f"There are {sparsification_info.params_quantizable} quantizable "
f"params, with a quantization percentage of "
f"{sparsification_info.params_quantized_percent}."
f"{quant_percent_formatted}%."
)

def _prepare_model_for_fsdp(self):
Expand Down
Loading