Welcome! This repository contains code used for constructing and running the BERT-based models applied to our school reviews analysis.
- src/models/base/bert_models.py - BERT models (MeanBERT and GruBERT)
- src/models/dataset.py - code for data prep
- src/models/bert_reviews.py - code for setting model hyper parameters, computing one forward pass, loss
- src/models/core/train_nn.py - wrapper class that handles training model, early stopping, etc.
- src/models/core/experiments.py - config information for running experiments (e.g. gpu allocation, parsing args, etc)
- src/sweeps/bert_reviews_sweep.py - parameter config for running sweep of experiments
sudo bash source venv/bin/activate CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python3.6 interp/bert_interpret.py
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python2 src/models/bert_reviews.py --groupname 'mn_avg_eb_meanbert' --outcome 'mn_avg_eb' CUDA_VISIBLE_DEVICES=1 PYTHONPATH=. python2 src/models/bert_reviews.py --groupname 'mn_avg_eb_robert' --outcome 'mn_avg_eb' --model_type 'robert' --hid_dim 768
tensorboard --logdir=
PYTHONPATH=. python src/models/core/experiments.py -d runs/bert_reviews/Mar11_2020/
Looking in: runs/bert_reviews/Mar11_2020/
1.3265: runs/bert_reviews/Mar11_2020/debug/hid_dim_128
PYTHONPATH=. python src/models/sweeps/bert_reviews_sweep.py --outcome mn_avg_eb --groupname pred_confounds --adv_terms=perwht,perfrl
runs/bert_reviews/Mar08_20/testadvloss/lr0.01_hiddim64/