forked from jaywalnut310/vits
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
1,061 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import math | ||
import os | ||
import random | ||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
import torch.utils.data | ||
import numpy as np | ||
import librosa | ||
import librosa.util as librosa_util | ||
from librosa.util import normalize, pad_center, tiny | ||
from scipy.signal import get_window | ||
from scipy.io.wavfile import read | ||
from librosa.filters import mel as librosa_mel_fn | ||
|
||
MAX_WAV_VALUE = 32768.0 | ||
|
||
|
||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor | ||
""" | ||
return torch.log(torch.clamp(x, min=clip_val) * C) | ||
|
||
|
||
def dynamic_range_decompression_torch(x, C=1): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor used to compress | ||
""" | ||
return torch.exp(x) / C | ||
|
||
|
||
def spectral_normalize_torch(magnitudes): | ||
output = dynamic_range_compression_torch(magnitudes) | ||
return output | ||
|
||
|
||
def spectral_de_normalize_torch(magnitudes): | ||
output = dynamic_range_decompression_torch(magnitudes) | ||
return output | ||
|
||
|
||
mel_basis = {} | ||
hann_window = {} | ||
|
||
|
||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): | ||
if torch.min(y) < -1.: | ||
print('min value is ', torch.min(y)) | ||
if torch.max(y) > 1.: | ||
print('max value is ', torch.max(y)) | ||
|
||
global hann_window | ||
dtype_device = str(y.dtype) + '_' + str(y.device) | ||
wnsize_dtype_device = str(win_size) + '_' + dtype_device | ||
if wnsize_dtype_device not in hann_window: | ||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | ||
|
||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | ||
y = y.squeeze(1) | ||
|
||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], | ||
center=center, pad_mode='reflect', normalized=False, onesided=True) | ||
|
||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | ||
return spec | ||
|
||
|
||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): | ||
global mel_basis | ||
dtype_device = str(spec.dtype) + '_' + str(spec.device) | ||
fmax_dtype_device = str(fmax) + '_' + dtype_device | ||
if fmax_dtype_device not in mel_basis: | ||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | ||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) | ||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) | ||
spec = spectral_normalize_torch(spec) | ||
return spec | ||
|
||
|
||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | ||
if torch.min(y) < -1.: | ||
print('min value is ', torch.min(y)) | ||
if torch.max(y) > 1.: | ||
print('max value is ', torch.max(y)) | ||
|
||
global mel_basis, hann_window | ||
dtype_device = str(y.dtype) + '_' + str(y.device) | ||
fmax_dtype_device = str(fmax) + '_' + dtype_device | ||
wnsize_dtype_device = str(win_size) + '_' + dtype_device | ||
if fmax_dtype_device not in mel_basis: | ||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | ||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) | ||
if wnsize_dtype_device not in hann_window: | ||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | ||
|
||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | ||
y = y.squeeze(1) | ||
|
||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], | ||
center=center, pad_mode='reflect', normalized=False, onesided=True) | ||
|
||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | ||
|
||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) | ||
spec = spectral_normalize_torch(spec) | ||
|
||
return spec |
Oops, something went wrong.