Skip to content

Commit

Permalink
Merge pull request #39 from numericalEFT/bugfix
Browse files Browse the repository at this point in the history
Bugfix
  • Loading branch information
kunyuan authored Feb 23, 2023
2 parents d7dd079 + cac387e commit 1513f58
Show file tree
Hide file tree
Showing 2 changed files with 89 additions and 54 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "MCIntegration"
uuid = "ea1e2de9-7db7-4b42-91ee-0cd1bf6df167"
authors = ["Kun Chen", "Xiansheng Cai", "Pengcheng Hou"]
version = "0.3.3"
version = "0.3.4"

[deps]
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
Expand Down
141 changes: 88 additions & 53 deletions example/bubble.jl
Original file line number Diff line number Diff line change
@@ -1,89 +1,124 @@
# This example demonstrated how to calculate the bubble diagram of free electrons using the Monte Carlo module

using LinearAlgebra, Random, Printf, BenchmarkTools, InteractiveUtils, Parameters
using ElectronGas
using LinearAlgebra, Random, Printf
using StaticArrays
using Lehmann
using MCIntegration
# using ProfileView

const Steps = 1e6

# include("parameter.jl")
beta = 25.0
rs = 1.0
const basic = Parameter.rydbergUnit(1 / beta, rs, 3)
const β = basic.β
const kF = basic.kF
const me = basic.me
const spin = basic.spin

@with_kw struct Para
n::Int = 0 # external Matsubara frequency
Qsize::Int = 8
extQ::Vector{SVector{3,Float64}} = [@SVector [q, 0.0, 0.0] for q in LinRange(0.0 * kF, 2.0 * kF, Qsize)]
Steps = 1e6

Base.@kwdef struct Para
rs::Float64 = 1.0
beta::Float64 = 25.0
spin::Int = 2
Qsize::Int = 4
# n::Int = 0 # external Matsubara frequency
dim::Int = 3
me::Float64 = 0.5

kF::Float64 = (dim == 3) ? (9π / (2spin))^(1 / 3) / rs : sqrt(4 / spin) / rs
extQ::Vector{SVector{3,Float64}} = [@SVector [q, 0.0, 0.0] for q in LinRange(0.0 * kF, 1.5 * kF, Qsize)]
β::Float64 = beta / (kF^2 / 2me)
end

function integrand(T, K, Ext; userdata)
function lindhard(q, para) #free electron polarization
me, kF, β, spin = para.me, para.kF, para.β, para.spin
density = me * kF / (2π^2)
# check sign of q, use -q if negative
(q < 1e-6) && (q = 1e-6)
x = q / 2 / kF
if abs(q - 2 * kF) > 1e-6
Π = (1 + (1 - x^2) * log1p(4 * x / ((1 - x)^2)) / 4 / x)
else
Π = 1.0
end
return -Π * density * spin / 2
end

function green::T, ω::T, β::T) where {T}
if τ >= T(0.0)
return ω > T(0.0) ?
exp(-ω * τ) / (1 + exp(-ω * β)) :
exp*- τ)) / (1 + exp* β))
else
return ω > T(0.0) ?
-exp(-ω *+ β)) / (1 + exp(-ω * β)) :
-exp(-ω * τ) / (1 + exp* β))
end
end

function integrand(vars, config) #for the vegas and vegasmc algorithms
# @assert idx == 1 "$(idx) is not a valid integrand"
para, _Ext = userdata
k = K[1]
# Tin, Tout = T[1], T[2]
R, Theta, Phi, T, Ext = vars
para = config.userdata
kF, β, me = para.kF, para.β, para.me

r = R[1] / (1 - R[1])
θ = Theta[1]
ϕ = Phi[1]
# varK[:, i+1] .= [r * sin(θ) * cos(ϕ), r * sin(θ) * sin(ϕ), r * cos(θ)]
k = [r * sin(θ) * cos(ϕ), r * sin(θ) * sin(ϕ), r * cos(θ)]
factor = 1.0 / (2π)^(para.dim) #each momentum loop is ∫dkxdkydkz/(2π)^3
factor *= r^2 / (1 - R[1])^2 * sin(θ)

Tin, Tout = 0.0, T[1]
extidx = Ext[1]
q = para.extQ[extidx] # external momentum
kq = k + q
τ = (Tout - Tin)
ω1 = (dot(k, k) - kF^2) / (2me)
g1 = Spectral.kernelFermiT(τ, ω1, β)
g1 = green(τ, ω1, β)
ω2 = (dot(kq, kq) - kF^2) / (2me)
g2 = Spectral.kernelFermiT(-τ, ω2, β)
phase = 1.0 / (2π)^3
return g1 * g2 * spin * phase * cos(2π * para.n * τ / β)
g2 = green(-τ, ω2, β)
n = 0 # external Matsubara frequency
return g1 * g2 * para.spin * factor * cos(2π * n * τ / β)
end

function measure(obs, weight; userdata)
# @assert idx == 1 "$(idx) is not a valid integrand"
para, Ext = userdata
obs[Ext[1]] += weight[1]
function integrand(idx, vars, config) #for the mcmc algorithm
return integrand(vars, config)::Float64
end

function run(steps)
function measure(vars, obs, weight, config) # for vegas and vegasmc algorithms
Ext = vars[end]
obs[1][Ext[1]] += weight[1]
end
function measure(idx, vars, obs, weight, config) # for the mcmc algorithm
measure(vars, obs, weight, config)
end

function run(steps, alg)
para = Para()
@unpack extQ, Qsize = para
extQ, Qsize = para.extQ, para.Qsize
kF, β = para.kF, para.β

# T = MCIntegration.Tau(β, β / 2.0)
T = MCIntegration.Continuous(0.0, β; alpha=3.0, adapt=true)
K = MCIntegration.FermiK(3, kF, 0.2 * kF, 10.0 * kF)
Ext = MCIntegration.Discrete(1, length(extQ); adapt=true) # external variable is specified
T = Continuous(0.0, β; alpha=3.0, adapt=true)
R = Continuous(0.0, 1.0; alpha=3.0, adapt=true)
θ = Continuous(0.0, 1π; alpha=3.0, adapt=true)
ϕ = Continuous(0.0, 2π; alpha=3.0, adapt=true)
# K = MCIntegration.FermiK(3, kF, 0.2 * kF, 10.0 * kF)
Ext = Discrete(1, length(extQ); adapt=false) # external variable is specified

dof = [[1, 1, 1],] # degrees of freedom of the normalization diagram and the bubble
obs = zeros(Float64, Qsize) # observable for the normalization diagram and the bubble
dof = [[1, 1, 1, 1, 1],] # degrees of freedom of the normalization diagram and the bubble
obs = [zeros(Float64, Qsize),] # observable for the normalization diagram and the bubble

# config = MCIntegration.Configuration(var=(T, K, Ext), dof=dof, obs=obs, para=para)
result = MCIntegration.integrate(integrand; measure=measure, userdata=(para, Ext),
var=(T, K, Ext), dof=dof, obs=obs, solver=:vegas,
neval=steps, print=0, block=16)
result = integrate(integrand; measure=measure, userdata=para,
var=(R, θ, ϕ, T, Ext), dof=dof, obs=obs, solver=alg,
neval=steps, print=0, debug=true)

if isnothing(result) == false
@unpack n, extQ = Para()
avg, std = result.mean, result.stdev

println("Algorithm : $(alg)")
@printf("%10s %10s %10s %10s\n", "q/kF", "avg", "err", "exact")
for (idx, q) in enumerate(extQ)
q = q[1]
p = Polarization.Polarization0_ZeroTemp(q, para.n, basic) * spin
@printf("%10.6f %10.6f ± %10.6f %10.6f\n", q / basic.kF, avg[idx], std[idx], p)
p = lindhard(q, para)
@printf("%10.6f %10.6f ± %10.6f %10.6f\n", q / kF, avg[idx], std[idx], p)
end
# println(MCIntegration.summary(result))
# i = 1
# println(result.config.var[i].histogram)
# println(sum(result.config.var[i].histogram))
# println(result.config.var[i].accumulation)
# println(result.config.var[i].distribution)
report(result)
end
end

run(Steps)
# @time run(Steps)
run(Steps, :mcmc)
run(Steps, :vegas)
run(Steps, :vegasmc)

2 comments on commit 1513f58

@kunyuan
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/78361

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.3.4 -m "<description of version>" 1513f586bd645c7ddc05882384d0956a7ce3b836
git push origin v0.3.4

Please sign in to comment.