-
Notifications
You must be signed in to change notification settings - Fork 626
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d91e1e6
commit efe2815
Showing
1 changed file
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# OBSS SAHI Tool | ||
# Code written by AnNT, 2023. | ||
|
||
import logging | ||
from typing import Any, Dict, List, Optional | ||
|
||
import numpy as np | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
from sahi.models.base import DetectionModel | ||
from sahi.prediction import ObjectPrediction | ||
from sahi.utils.compatibility import fix_full_shape_list, fix_shift_amount_list | ||
from sahi.utils.import_utils import check_requirements | ||
|
||
|
||
class Yolov9DetectionModel(DetectionModel): | ||
def check_dependencies(self) -> None: | ||
check_requirements(["ultralytics"]) | ||
|
||
def load_model(self): | ||
""" | ||
Detection model is initialized and set to self.model. | ||
""" | ||
|
||
from ultralytics import YOLO | ||
|
||
try: | ||
model = YOLO(self.model_path) | ||
model.to(self.device) | ||
self.set_model(model) | ||
except Exception as e: | ||
raise TypeError("model_path is not a valid yolov8 model path: ", e) | ||
|
||
def set_model(self, model: Any): | ||
""" | ||
Sets the underlying YOLOv8 model. | ||
Args: | ||
model: Any | ||
A YOLOv9 model | ||
""" | ||
|
||
self.model = model | ||
|
||
# set category_mapping | ||
if not self.category_mapping: | ||
category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)} | ||
self.category_mapping = category_mapping | ||
|
||
def perform_inference(self, image: np.ndarray): | ||
""" | ||
Prediction is performed using self.model and the prediction result is set to self._original_predictions. | ||
Args: | ||
image: np.ndarray | ||
A numpy array that contains the image to be predicted. 3 channel image should be in RGB order. | ||
""" | ||
|
||
# Confirm model is loaded | ||
if self.model is None: | ||
raise ValueError("Model is not loaded, load it by calling .load_model()") | ||
if self.image_size is not None: # ADDED IMAGE SIZE OPTION FOR YOLOV8 MODELS: | ||
prediction_result = self.model( | ||
image[:, :, ::-1], imgsz=self.image_size, verbose=False, device=self.device | ||
) # YOLOv8 expects numpy arrays to have BGR | ||
else: | ||
prediction_result = self.model( | ||
image[:, :, ::-1], verbose=False, device=self.device | ||
) # YOLOv8 expects numpy arrays to have BGR | ||
prediction_result = [ | ||
result.boxes.data[result.boxes.data[:, 4] >= self.confidence_threshold] for result in prediction_result | ||
] | ||
|
||
self._original_predictions = prediction_result | ||
|
||
@property | ||
def category_names(self): | ||
return self.model.names.values() | ||
|
||
@property | ||
def num_categories(self): | ||
""" | ||
Returns number of categories | ||
""" | ||
return len(self.model.names) | ||
|
||
@property | ||
def has_mask(self): | ||
""" | ||
Returns if model output contains segmentation mask | ||
""" | ||
return False # fix when yolov5 supports segmentation models | ||
|
||
def _create_object_prediction_list_from_original_predictions( | ||
self, | ||
shift_amount_list: Optional[List[List[int]]] = [[0, 0]], | ||
full_shape_list: Optional[List[List[int]]] = None, | ||
): | ||
""" | ||
self._original_predictions is converted to a list of prediction.ObjectPrediction and set to | ||
self._object_prediction_list_per_image. | ||
Args: | ||
shift_amount_list: list of list | ||
To shift the box and mask predictions from sliced image to full sized image, should | ||
be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...] | ||
full_shape_list: list of list | ||
Size of the full image after shifting, should be in the form of | ||
List[[height, width],[height, width],...] | ||
""" | ||
original_predictions = self._original_predictions | ||
|
||
# compatilibty for sahi v0.8.15 | ||
shift_amount_list = fix_shift_amount_list(shift_amount_list) | ||
full_shape_list = fix_full_shape_list(full_shape_list) | ||
|
||
# handle all predictions | ||
object_prediction_list_per_image = [] | ||
for image_ind, image_predictions_in_xyxy_format in enumerate(original_predictions): | ||
shift_amount = shift_amount_list[image_ind] | ||
full_shape = None if full_shape_list is None else full_shape_list[image_ind] | ||
object_prediction_list = [] | ||
|
||
# process predictions | ||
for prediction in image_predictions_in_xyxy_format.cpu().detach().numpy(): | ||
x1 = prediction[0] | ||
y1 = prediction[1] | ||
x2 = prediction[2] | ||
y2 = prediction[3] | ||
bbox = [x1, y1, x2, y2] | ||
score = prediction[4] | ||
category_id = int(prediction[5]) | ||
category_name = self.category_mapping[str(category_id)] | ||
|
||
# fix negative box coords | ||
bbox[0] = max(0, bbox[0]) | ||
bbox[1] = max(0, bbox[1]) | ||
bbox[2] = max(0, bbox[2]) | ||
bbox[3] = max(0, bbox[3]) | ||
|
||
# fix out of image box coords | ||
if full_shape is not None: | ||
bbox[0] = min(full_shape[1], bbox[0]) | ||
bbox[1] = min(full_shape[0], bbox[1]) | ||
bbox[2] = min(full_shape[1], bbox[2]) | ||
bbox[3] = min(full_shape[0], bbox[3]) | ||
|
||
# ignore invalid predictions | ||
if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]): | ||
logger.warning(f"ignoring invalid prediction with bbox: {bbox}") | ||
continue | ||
|
||
object_prediction = ObjectPrediction( | ||
bbox=bbox, | ||
category_id=category_id, | ||
score=score, | ||
bool_mask=None, | ||
category_name=category_name, | ||
shift_amount=shift_amount, | ||
full_shape=full_shape, | ||
) | ||
object_prediction_list.append(object_prediction) | ||
object_prediction_list_per_image.append(object_prediction_list) | ||
|
||
self._object_prediction_list_per_image = object_prediction_list_per_image |