-
Notifications
You must be signed in to change notification settings - Fork 138
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
265b808
commit a832a7e
Showing
2 changed files
with
937 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
import glob | ||
import json | ||
import os | ||
import random | ||
import pickle | ||
from typing import List | ||
|
||
import numpy as np | ||
import torch | ||
from tqdm import tqdm | ||
import cv2 | ||
|
||
from mmhuman3d.core.cameras import build_cameras | ||
# from mmhuman3d.core.conventions.keypoints_mapping import smplx | ||
from mmhuman3d.core.conventions.keypoints_mapping import ( | ||
convert_kps, | ||
get_keypoint_idx, | ||
get_keypoint_idxs_by_part, | ||
) | ||
from mmhuman3d.data.data_structures.human_data import HumanData | ||
from mmhuman3d.models.body_models.builder import build_body_model | ||
from mmhuman3d.models.body_models.utils import batch_transform_to_camera_frame | ||
# from mmhuman3d.utils.transforms import aa_to_rotmat, rotmat_to_aa | ||
from .base_converter import BaseModeConverter | ||
from .builder import DATA_CONVERTERS | ||
|
||
import pdb | ||
|
||
|
||
@DATA_CONVERTERS.register_module() | ||
class Pw3dConverter(BaseModeConverter): | ||
"""3D Poses in the Wild dataset `Recovering Accurate 3D Human Pose in The | ||
Wild Using IMUs and a Moving Camera' ECCV'2018 More details can be found in | ||
the `paper. | ||
<https://virtualhumans.mpi-inf.mpg.de/papers/vonmarcardECCV18/ | ||
vonmarcardECCV18.pdf>`__ . | ||
Args: | ||
modes (list): 'test' and/or 'train' for accepted modes | ||
""" | ||
|
||
ACCEPTED_MODES = ['train', 'test', 'val'] | ||
|
||
def __init__(self, modes: List = []): | ||
|
||
self.device = torch.device( | ||
'cuda') if torch.cuda.is_available() else torch.device('cpu') | ||
|
||
self.misc_config = dict( | ||
bbox_source='keypoints2d_smpl', | ||
smpl_source='original', | ||
cam_param_type='prespective', | ||
bbox_scale=1.2, | ||
kps3d_root_aligned=False, | ||
has_gender=True, | ||
) | ||
|
||
self.smpl_shape = { | ||
'body_pose': (-1, 69), | ||
'betas': (-1, 10), | ||
'global_orient': (-1, 3), | ||
'transl': (-1, 3),} | ||
|
||
super(Pw3dConverter, self).__init__(modes) | ||
|
||
def convert_by_mode(self, | ||
dataset_path: str, | ||
out_path: str, | ||
mode: str) -> dict: | ||
""" | ||
Args: | ||
dataset_path (str): Path to directory where raw images and | ||
annotations are stored. | ||
out_path (str): Path to directory to save preprocessed npz file | ||
mode (str): Mode in accepted modes | ||
Returns: | ||
dict: | ||
A dict containing keys image_path, bbox_xywh, smpl, meta | ||
stored in HumanData() format | ||
""" | ||
|
||
# use HumanData to store all data | ||
human_data = HumanData() | ||
|
||
# find sequences | ||
seq_ps = sorted(glob.glob(os.path.join(dataset_path, 'sequenceFiles', mode, '*.pkl'))) | ||
|
||
# build smpl model | ||
smpl_gendered = {} | ||
for gender in ['male', 'female', 'neutral']: | ||
smpl_gendered[gender] = build_body_model( | ||
dict( | ||
type='SMPL', | ||
keypoint_src='smpl_45', | ||
keypoint_dst='smpl_45', | ||
model_path='data/body_models/smpl', | ||
gender=gender, | ||
num_betas=10, | ||
use_pca=False, | ||
batch_size=1)).to(self.device) | ||
|
||
# initialize | ||
smpl_ = {} | ||
for key in self.smpl_shape.keys(): | ||
smpl_[key] = [] | ||
bboxs_ = {} | ||
for key in ['bbox_xywh']: | ||
bboxs_[key] = [] | ||
image_path_, keypoints2d_original_ = [], [] | ||
keypoints2d_smpl_, keypoints3d_smpl_ = [], [] | ||
meta_ = {} | ||
for meta_key in ['principal_point', 'focal_length', 'height', 'width', | ||
'gender', 'track_id', 'sequence_name', 'RT']: | ||
meta_[meta_key] = [] | ||
|
||
seed = '240116' | ||
size = 999 | ||
|
||
# add track id | ||
random_ids = np.random.RandomState(seed=int(seed)).permutation(999999) | ||
used_id_num = 0 | ||
|
||
|
||
for seq_p in tqdm(seq_ps): | ||
|
||
# load sequence annotation | ||
with open(seq_p, 'rb') as f: | ||
data = pickle.load(f, encoding='latin1') | ||
|
||
seq = os.path.basename(seq_p).split('.')[0] | ||
|
||
image_ps = sorted(glob.glob(os.path.join(dataset_path, 'imageFiles', seq, '*.jpg'))) | ||
frame_len = len(image_ps) | ||
img_sample = cv2.imread(image_ps[0]) | ||
height, width = img_sample.shape[:2] | ||
|
||
# load smpl params | ||
smpl_param = {} | ||
smpl_param['global_orient'] = np.array(data['poses'])[:, :, :3] | ||
smpl_param['body_pose'] = np.array(data['poses'])[:, :, 3:] | ||
try: | ||
smpl_param['betas'] = np.array([betas[:10] for betas in data['betas']]).reshape(-1, 1, 10).repeat(frame_len, axis=1).reshape(-1, frame_len, 10) | ||
except: | ||
pdb.set_trace() | ||
smpl_param['transl'] = np.array(data['trans']) | ||
|
||
# load gender | ||
genders = [] | ||
for gender in data['genders']: | ||
if gender == 'm': | ||
genders.append('male') | ||
if gender == 'f': | ||
genders.append('female') | ||
if gender == 'n': | ||
genders.append('neutral') | ||
|
||
# load camera and build camera | ||
intrinsics = np.array(data['cam_intrinsics']) | ||
extrinsics = np.array(data['cam_poses']) | ||
focal_length = [intrinsics[0, 0], intrinsics[1, 1]] | ||
principal_point = [intrinsics[0, 2], intrinsics[1, 2]] | ||
|
||
# build camera | ||
camera = build_cameras( | ||
dict( | ||
type='PerspectiveCameras', | ||
convention='opencv', | ||
in_ndc=False, | ||
focal_length=focal_length, | ||
image_size=(width, height), | ||
principal_point=principal_point)).to(self.device) | ||
|
||
for gid in range(len(genders)): | ||
|
||
track_id = random_ids[used_id_num] | ||
used_id_num += 1 | ||
|
||
body_model_param_tensor = {key: torch.tensor( | ||
np.array(smpl_param[key][gid:gid+1, ...].reshape(self.smpl_shape[key])), | ||
device=self.device, dtype=torch.float32) | ||
for key in smpl_param.keys()} | ||
output = smpl_gendered[genders[gid]](**body_model_param_tensor, return_verts=False) | ||
kps3d = output['joints'].detach().cpu().numpy() | ||
|
||
# get pelvis world and transl | ||
pelvis_world = kps3d[:, get_keypoint_idx('pelvis', 'smpl'), :] | ||
transl = smpl_param['transl'][gid, ...] | ||
global_orient = smpl_param['global_orient'][gid, ...] | ||
body_pose = smpl_param['body_pose'][gid, ...] | ||
betas = smpl_param['betas'][gid, ...] | ||
|
||
# batch transform smpl to camera frame | ||
global_orient, transl = batch_transform_to_camera_frame( | ||
global_orient, transl, pelvis_world, extrinsics) | ||
|
||
output = smpl_gendered[genders[gid]]( | ||
global_orient=torch.Tensor(global_orient).to(self.device), | ||
body_pose=torch.Tensor(body_pose).to(self.device), | ||
betas=torch.Tensor(betas).to(self.device), | ||
transl=torch.Tensor(transl).to(self.device), | ||
return_verts=False, ) | ||
smpl_joints = output['joints'] | ||
kps3d_c = smpl_joints.detach().cpu().numpy() | ||
kps2d = camera.transform_points_screen(smpl_joints)[..., :2].detach().cpu().numpy() | ||
|
||
|
||
# test 2d overlay | ||
# for kp in kps2d[0]: | ||
# if 0 < kp[0] < width and 0 < kp[1] < height: | ||
# cv2.circle(img_sample, (int(kp[0]), int(kp[1])), 3, (0,0,255), 1) | ||
# pass | ||
# # write image | ||
# os.makedirs(f'{out_path}', exist_ok=True) | ||
# cv2.imwrite(f'{out_path}/{os.path.basename(seq)}.jpg', img_sample) | ||
|
||
# append bbox | ||
for kp2d in kps2d: | ||
# get bbox | ||
bbox_xyxy = self._keypoints_to_scaled_bbox(kp2d, scale=self.misc_config['bbox_scale']) | ||
bbox_xywh = self._xyxy2xywh(bbox_xyxy) | ||
bboxs_['bbox_xywh'].append(bbox_xywh) | ||
|
||
# append image path | ||
image_paths = [imgp.replace(f'{dataset_path}/', '') for imgp in image_ps] | ||
image_path_ += image_paths | ||
|
||
# append keypoints | ||
keypoints2d_smpl_.append(kps2d) | ||
keypoints3d_smpl_.append(kps3d_c) | ||
|
||
# append smpl | ||
smpl_['global_orient'].append(global_orient) | ||
smpl_['body_pose'].append(body_pose) | ||
smpl_['betas'].append(betas) | ||
smpl_['transl'].append(transl) | ||
|
||
# append meta | ||
meta_['principal_point'] += [principal_point for pp in range(frame_len)] | ||
meta_['focal_length'] += [focal_length for fl in range(frame_len)] | ||
meta_['height'] += [height for h in range(frame_len)] | ||
meta_['width'] += [width for w in range(frame_len)] | ||
meta_['RT'] += [extrinsics[rt] for rt in range(frame_len)] | ||
meta_['track_id'] += [track_id for tid in range(frame_len)] | ||
meta_['gender'] += [genders[gid] for g in range(frame_len)] | ||
meta_['sequence_name'] += [f'{seq}_{track_id}' for sn in range(frame_len)] | ||
|
||
size_i = min(size, len(seq_ps)) | ||
|
||
# append smpl | ||
for key in smpl_.keys(): | ||
smpl_[key] = np.concatenate( | ||
smpl_[key], axis=0).reshape(self.smpl_shape[key]) | ||
human_data['smpl'] = smpl_ | ||
|
||
# append bbox | ||
for key in bboxs_.keys(): | ||
bbox_ = np.array(bboxs_[key]).reshape((-1, 4)) | ||
# add confidence | ||
conf_ = np.ones(bbox_.shape[0]) | ||
bbox_ = np.concatenate([bbox_, conf_[..., None]], axis=-1) | ||
human_data[key] = bbox_ | ||
|
||
# append keypoints 2d | ||
keypoints2d = np.concatenate( | ||
keypoints2d_smpl_, axis=0).reshape(-1, 45, 2) | ||
keypoints2d_conf = np.ones([keypoints2d.shape[0], 45, 1]) | ||
keypoints2d = np.concatenate([keypoints2d, keypoints2d_conf], | ||
axis=-1) | ||
keypoints2d, keypoints2d_mask = \ | ||
convert_kps(keypoints2d, src='smpl_45', dst='human_data') | ||
human_data['keypoints2d_smpl'] = keypoints2d | ||
human_data['keypoints2d_smpl_mask'] = keypoints2d_mask | ||
|
||
# append keypoints 3d | ||
keypoints3d = np.concatenate( | ||
keypoints3d_smpl_, axis=0).reshape(-1, 45, 3) | ||
keypoints3d_conf = np.ones([keypoints3d.shape[0], 45, 1]) | ||
keypoints3d = np.concatenate([keypoints3d, keypoints3d_conf], | ||
axis=-1) | ||
keypoints3d, keypoints3d_mask = \ | ||
convert_kps(keypoints3d, src='smpl_45', dst='human_data') | ||
human_data['keypoints3d_smpl'] = keypoints3d | ||
human_data['keypoints3d_smpl_mask'] = keypoints3d_mask | ||
|
||
# append image path | ||
human_data['image_path'] = image_path_ | ||
|
||
# append meta | ||
human_data['meta'] = meta_ | ||
|
||
# append misc | ||
human_data['misc'] = self.misc_config | ||
human_data['config'] = f'pw3d_{mode}' | ||
|
||
# save | ||
os.makedirs(f'{out_path}', exist_ok=True) | ||
out_file = f'{out_path}/pw3d_{mode}_{seed}_{"{:03d}".format(size_i)}.npz' | ||
human_data.dump(out_file) | ||
|
||
|
||
|
||
|
||
|
||
|
||
# pdb.set_trace() | ||
|
||
|
Oops, something went wrong.