-
Notifications
You must be signed in to change notification settings - Fork 143
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
Signed-off-by: Yaliang Wu <[email protected]> (cherry picked from commit 0722df1) Co-authored-by: Yaliang Wu <[email protected]>
- Loading branch information
1 parent
bb13148
commit a339153
Showing
1 changed file
with
299 additions
and
0 deletions.
There are no files selected for viewing
299 changes: 299 additions & 0 deletions
299
docs/tutorials/semantic_search/generate_embeddings_for_arrays_of_object.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
# Topic | ||
|
||
This tutorial shows how to generate embeddings for arrays of objects in OpenSearch. | ||
|
||
Note: Replace the placeholders that start with `your_` with your own values. | ||
|
||
# Steps | ||
|
||
## 1. Create embedding model | ||
|
||
We will use [Bedrock Titan Embedding model](https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html) in this tutorial. | ||
|
||
- If you are using AWS managed OpenSearch service, you can use this [python notebook](https://github.com/opensearch-project/ml-commons/blob/2.x/docs/tutorials/aws/AIConnectorHelper.ipynb) to create Bedrock Embedding Model easily. Search `1. Create Connector of Bedrock Embedding Model` on the page. | ||
Or you can manually create connector following this [tutorial](https://github.com/opensearch-project/ml-commons/blob/2.x/docs/tutorials/aws/semantic_search_with_bedrock_titan_embedding_model.md). | ||
|
||
- If you are using self-managed OpenSearch, you can follow this [blueprint](https://github.com/opensearch-project/ml-commons/blob/2.x/docs/remote_inference_blueprints/bedrock_connector_titan_embedding_blueprint.md). | ||
|
||
Use the model ID from the response to test predict API: | ||
``` | ||
POST /_plugins/_ml/models/your_embedding_model_id/_predict | ||
{ | ||
"parameters": { | ||
"inputText": "hello world" | ||
} | ||
} | ||
``` | ||
Sample response: | ||
|
||
``` | ||
{ | ||
"inference_results": [ | ||
{ | ||
"output": [ | ||
{ | ||
"name": "sentence_embedding", | ||
"data_type": "FLOAT32", | ||
"shape": [ 1536 ], | ||
"data": [0.7265625, -0.0703125, 0.34765625, ...] | ||
} | ||
], | ||
"status_code": 200 | ||
} | ||
] | ||
} | ||
``` | ||
|
||
## 2. Create ingest pipeline | ||
|
||
### 2.1 Create test index | ||
``` | ||
PUT my_books | ||
{ | ||
"settings" : { | ||
"index.knn" : "true", | ||
"default_pipeline": "bedrock_embedding_foreach_pipeline" | ||
}, | ||
"mappings": { | ||
"properties": { | ||
"books": { | ||
"type": "nested", | ||
"properties": { | ||
"title_embedding": { | ||
"type": "knn_vector", | ||
"dimension": 1536 | ||
}, | ||
"title": { | ||
"type": "text" | ||
}, | ||
"description": { | ||
"type": "text" | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
``` | ||
|
||
### 2.2 Create ingest pipeline | ||
|
||
Create sub-pipeline to generate embedding for one item in the array. | ||
|
||
This pipeline contains 3 processors | ||
- set processor: The `text_embedding` processor is unable to identify "_ingest._value.title". You need to copy "_ingest._value.title" to a temporary field for text_embedding to process it. | ||
- text_embedding processor: convert value of the temporary field to embedding | ||
- remove processor: remove temporary field | ||
``` | ||
PUT _ingest/pipeline/bedrock_embedding_pipeline | ||
{ | ||
"processors": [ | ||
{ | ||
"set": { | ||
"field": "title_tmp", | ||
"value": "{{_ingest._value.title}}" | ||
} | ||
}, | ||
{ | ||
"text_embedding": { | ||
"model_id": your_embedding_model_id, | ||
"field_map": { | ||
"title_tmp": "_ingest._value.title_embedding" | ||
} | ||
} | ||
}, | ||
{ | ||
"remove": { | ||
"field": "title_tmp" | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
|
||
Create pipeline with foreach processor: | ||
``` | ||
PUT _ingest/pipeline/bedrock_embedding_foreach_pipeline | ||
{ | ||
"description": "Test nested embeddings", | ||
"processors": [ | ||
{ | ||
"foreach": { | ||
"field": "books", | ||
"processor": { | ||
"pipeline": { | ||
"name": "bedrock_embedding_pipeline" | ||
} | ||
}, | ||
"ignore_failure": true | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
|
||
### 2.3 Simulate pipeline | ||
|
||
- Case1: two book objects with title | ||
``` | ||
POST _ingest/pipeline/bedrock_embedding_foreach_pipeline/_simulate | ||
{ | ||
"docs": [ | ||
{ | ||
"_index": "my_books", | ||
"_id": "1", | ||
"_source": { | ||
"books": [ | ||
{ | ||
"title": "first book", | ||
"description": "This is first book" | ||
}, | ||
{ | ||
"title": "second book", | ||
"description": "This is second book" | ||
} | ||
] | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
Response | ||
``` | ||
{ | ||
"docs": [ | ||
{ | ||
"doc": { | ||
"_index": "my_books", | ||
"_id": "1", | ||
"_source": { | ||
"books": [ | ||
{ | ||
"title": "first book", | ||
"title_embedding": [-1.1015625, 0.65234375, 0.7578125, ...], | ||
"description": "This is first book" | ||
}, | ||
{ | ||
"title": "second book", | ||
"title_embedding": [-0.65234375, 0.21679688, 0.7265625, ...], | ||
"description": "This is second book" | ||
} | ||
] | ||
}, | ||
"_ingest": { | ||
"_value": null, | ||
"timestamp": "2024-05-28T16:16:50.538929413Z" | ||
} | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
- Case2: book object without title | ||
``` | ||
POST _ingest/pipeline/bedrock_embedding_foreach_pipeline/_simulate | ||
{ | ||
"docs": [ | ||
{ | ||
"_index": "my_books", | ||
"_id": "1", | ||
"_source": { | ||
"books": [ | ||
{ | ||
"title": "first book", | ||
"description": "This is first book" | ||
}, | ||
{ | ||
"description": "This is second book" | ||
} | ||
] | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
Response | ||
``` | ||
{ | ||
"docs": [ | ||
{ | ||
"doc": { | ||
"_index": "my_books", | ||
"_id": "1", | ||
"_source": { | ||
"books": [ | ||
{ | ||
"title": "first book", | ||
"title_embedding": [-1.1015625, 0.65234375, 0.7578125, ...], | ||
"description": "This is first book" | ||
}, | ||
{ | ||
"title": "second book", | ||
"description": "This is second book" | ||
} | ||
] | ||
}, | ||
"_ingest": { | ||
"_value": null, | ||
"timestamp": "2024-05-28T16:19:03.942644042Z" | ||
} | ||
} | ||
} | ||
] | ||
} | ||
``` | ||
### 2.4 Test ingest data | ||
Ingest one doc | ||
``` | ||
PUT my_books/_doc/1 | ||
{ | ||
"books": [ | ||
{ | ||
"title": "first book", | ||
"description": "This is first book" | ||
}, | ||
{ | ||
"title": "second book", | ||
"description": "This is second book" | ||
} | ||
] | ||
} | ||
``` | ||
Get document | ||
``` | ||
GET my_books/_doc/1 | ||
``` | ||
Response | ||
``` | ||
{ | ||
"_index": "my_books", | ||
"_id": "1", | ||
"_version": 1, | ||
"_seq_no": 0, | ||
"_primary_term": 1, | ||
"found": true, | ||
"_source": { | ||
"books": [ | ||
{ | ||
"description": "This is first book", | ||
"title": "first book", | ||
"title_embedding": [-1.1015625, 0.65234375, 0.7578125, ...] | ||
}, | ||
{ | ||
"description": "This is second book", | ||
"title": "second book", | ||
"title_embedding": [-0.65234375, 0.21679688, 0.7265625, ...] | ||
} | ||
] | ||
} | ||
} | ||
``` | ||
Bulk ingestion | ||
``` | ||
POST _bulk | ||
{ "index" : { "_index" : "my_books" } } | ||
{ "books" : [{"title": "first book", "description": "This is first book"}, {"title": "second book", "description": "This is second book"}] } | ||
{ "index" : { "_index" : "my_books" } } | ||
{ "books" : [{"title": "third book", "description": "This is third book"}, {"description": "This is fourth book"}] } | ||
``` |