Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add tutorial for cross-account model invocation on amazon managed cluster #3064

Merged
merged 1 commit into from
Oct 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
# Topic

> This tutorial explains detail steps if you want to configure connector to use Bedrock model in another AWS account. This cross-account model invocation feature starts from 2.15.

> Bedrock has [quota limit](https://docs.aws.amazon.com/bedrock/latest/userguide/quotas.html). You can purchase [Provisioned Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-throughput.html) to increase quota limit.

This doc introduces how to build semantic search in Amazon managed OpenSearch with [Bedrock Titan embedding model](https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html) in another AWS account.
If you are not using Amazon OpenSearch, you can refer to [bedrock_connector_titan_embedding_blueprint](https://github.com/opensearch-project/ml-commons/blob/2.x/docs/remote_inference_blueprints/bedrock_connector_titan_embedding_blueprint.md).

Note: You should replace the placeholders with prefix `your_` with your own value

In this tutorial, we will use two AWS accounts. One for running OpenSearch cluster, we call it account A; the other for invoking Bedrock model, we call it account B.

# Steps

The support cross account model invokation, we need to configure two roles in connector credential part:
- `roleArn`: role in account A which will be used to assume external account role in account B
- `externalAccountRoleArn`: role in account B which will be used to invoke Bedrock model.

In this tutorial , we will use such role name
- Account A: `my_cross_account_role`, `roleArn` will be `arn:aws:iam::<your_aws_account_A>:role/my_cross_account_role_accountA`
- Account B: `my_invoke_bedrock_role`, `externalAccountRoleArn` will be `arn:aws:iam::<your_aws_account_B>:role/my_invoke_bedrock_role_accountB`

## 0. Create OpenSearch cluster in Account A

Go to AWS OpenSearch console UI and create OpenSearch domain.

Note the domain ARN which will be used in later steps.


## 1. Create IAM role in Account B
To invoke Bedrock model, we need to create an IAM role with proper permission.
This IAM role will be configured in connector. Connector will use this role to invoke Bedrock model.

Go to IAM console, create IAM role `my_invoke_bedrock_role_accountB` with:

- Custom trust policy:
```
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::<your_aws_account_A>:role/my_cross_account_role_accountA"
},
"Action": "sts:AssumeRole"
}
]
}
```
- Permission
```
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"bedrock:InvokeModel"
],
"Effect": "Allow",
"Resource": "arn:aws:bedrock:*::foundation-model/amazon.titan-embed-text-v1"
}
]
}
```

## 2. Create IAM role in account A

### 2.1 Create IAM role for assuming externalAccountRoleArn
Create an IAM role which can assume `externalAccountRoleArn` in account B.

Go to IAM console, create IAM role `my_cross_account_role_accountA` with:

- Custom trust policy:
```
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "es.amazonaws.com"
},
"Action": "sts:AssumeRole"
}
]
}
```
- Permission
```
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "arn:aws:iam::<your_aws_account_B>:role/my_invoke_bedrock_role_accountB"
}
]
}
```

### 2.2 Create IAM role for Signing create connector request

Generate a new IAM role specifically for signing your create connector request.


Create IAM role `my_create_connector_role_accountA` with
- Custom trust policy. Note: `your_iam_user_arn` is the IAM user which will run `aws sts assume-role` in step 3.1
```
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "your_iam_user_arn"
},
"Action": "sts:AssumeRole"
}
]
}
```
- permission
```
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::<your_aws_account_A>:role/my_cross_account_role_accountA"
},
{
"Effect": "Allow",
"Action": "es:ESHttpPost",
"Resource": "your_opensearch_domain_arn_created_in_step0"
}
]
}
```

Copy this role ARN which will be used in later steps.

### 2.3 Map backend role

1. Log in to your OpenSearch Dashboard and navigate to the "Security" page, which you can find in the left-hand menu.
2. Then click "Roles" on security page (you can find it on left-hand), then find "ml_full_access" role and click it.
3. On "ml_full_access" role detail page, click "Mapped users", then click "Manage mapping". Paste IAM role ARN created in step 2.2 to backend roles part: `arn:aws:iam::<your_aws_account_A>:role/my_create_connector_role_accountA`.
Click "Map", then the IAM role configured successfully in your OpenSearch cluster.

![Alt text](images/semantic_search/mapping_iam_role_arn.png)

## 3. Create Connector

Find more details on [connector](https://opensearch.org/docs/latest/ml-commons-plugin/remote-models/connectors/)


### 3.1 Get temporary credential of the role created in step 2.2:
Use your IAM user credential to assume role created in step 2.2
```
aws sts assume-role --role-arn arn:aws:iam::<your_aws_account_A>:role/my_create_connector_role_accountA --role-session-name your_session_name
```

Configure the temporary credential in `~/.aws/credentials` like this

```
[default]
AWS_ACCESS_KEY_ID=your_access_key_of_role_created_in_step2.2
AWS_SECRET_ACCESS_KEY=your_secret_key_of_role_created_in_step2.2
AWS_SESSION_TOKEN=your_session_token_of_role_created_in_step2.2
```

### 3.2 Create connector

Run this python code with the temporary credential configured in `~/.aws/credentials`

```
import boto3
import requests
from requests_aws4auth import AWS4Auth

host = 'your_amazon_opensearch_domain_endpoint_created_in_step0'
region = 'your_amazon_opensearch_domain_region'
service = 'es'

credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service, session_token=credentials.token)

path = '/_plugins/_ml/connectors/_create'
url = host + path

bedrock_model_region='your_bedrock_model_region'
payload = {
"name": "Amazon Bedrock Connector: titan embedding v1",
"description": "The connector to bedrock Titan embedding model",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": bedrock_model_region,
"service_name": "bedrock"
},
"credential": {
"roleArn": "arn:aws:iam::<your_aws_account_A>:role/my_cross_account_role_accountA"
"externalAccountRoleArn": "arn:aws:iam::<your_aws_account_B>:role/my_invoke_bedrock_role_accountB"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": f"https://bedrock-runtime.{bedrock_model_region}.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "connector.pre_process.bedrock.embedding",
"post_process_function": "connector.post_process.bedrock.embedding"
}
]
}

headers = {"Content-Type": "application/json"}

r = requests.post(url, auth=awsauth, json=payload, headers=headers)
print(r.text)
```
The script will output connector id.

sample output
```
{"connector_id":"N0qpQY0BOhavBOmfOCnw"}
```

Copy connector id which will be used in later steps.

## 4. Create Model and test

Login your OpenSearch Dashboard, open DevTools, then run these

1. Create model group
```
POST /_plugins/_ml/model_groups/_register
{
"name": "Bedrock_embedding_model",
"description": "Test model group for bedrock embedding model"
}
```
Sample output
```
{
"model_group_id": "LxWiQY0BTaDH9c7t9xeE",
"status": "CREATED"
}
```

2. Register model

```
POST /_plugins/_ml/models/_register
{
"name": "bedrock titan embedding model v1",
"function_name": "remote",
"description": "test embedding model",
"model_group_id": "LxWiQY0BTaDH9c7t9xeE",
"connector_id": "N0qpQY0BOhavBOmfOCnw"
}
```
Sample output
```
{
"task_id": "O0q3QY0BOhavBOmf1SmL",
"status": "CREATED",
"model_id": "PEq3QY0BOhavBOmf1Sml"
}
```

3. Deploy model
```
POST /_plugins/_ml/models/PEq3QY0BOhavBOmf1Sml/_deploy
```
Sample output
```
{
"task_id": "PUq4QY0BOhavBOmfBCkQ",
"task_type": "DEPLOY_MODEL",
"status": "COMPLETED"
}
```
4. Predict
```
POST /_plugins/_ml/models/PEq3QY0BOhavBOmf1Sml/_predict
{
"parameters": {
"inputText": "hello world"
}
}
```
Sample response
```
{
"inference_results": [
{
"output": [
{
"name": "sentence_embedding",
"data_type": "FLOAT32",
"shape": [
1536
],
"data": [
0.7265625,
-0.0703125,
0.34765625,
...]
}
],
"status_code": 200
}
]
}
```

## 5. Semantic search

### 5.1 create ingest pipeline
Find more details: [ingest pipeline](https://opensearch.org/docs/latest/ingest-pipelines/)

```
PUT /_ingest/pipeline/my_bedrock_embedding_pipeline
{
"description": "text embedding pentest",
"processors": [
{
"text_embedding": {
"model_id": "your_bedrock_embedding_model_id_created_in_step4",
"field_map": {
"text": "text_knn"
}
}
}
]
}
```
### 5.2 create k-NN index
Find more details: [k-NN index](https://opensearch.org/docs/latest/search-plugins/knn/knn-index/)

You should customize your k-NN index for better performance.
```
PUT my_index
{
"settings": {
"index": {
"knn.space_type": "cosinesimil",
"default_pipeline": "my_bedrock_embedding_pipeline",
"knn": "true"
}
},
"mappings": {
"properties": {
"text_knn": {
"type": "knn_vector",
"dimension": 1536
}
}
}
}
```
### 5.3 ingest test data
```
POST /my_index/_doc/1000001
{
"text": "hello world."
}
```
### 5.4 search
Find more details: [neural search](https://opensearch.org/docs/latest/search-plugins/neural-search/).
```
POST /my_index/_search
{
"query": {
"neural": {
"text_knn": {
"query_text": "hello",
"model_id": "your_embedding_model_id_created_in_step4",
"k": 100
}
}
},
"size": "1",
"_source": ["text"]
}
```
Loading