Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

lonboard backend for geopandas explore #412

Closed
wants to merge 13 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions environment.yml
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
name: geosnap
channels:
- conda-forge
- defaults
dependencies:
- pandas
- giddy >=2.2.1
Expand All @@ -20,8 +19,9 @@ dependencies:
- contextily
- mapclassify
- spopt >=0.3.0
- s3fs
- segregation >=2.0
- pyproj >=3
- pandana
- pooch
- lonboard
- osmnx >=2.0
5 changes: 3 additions & 2 deletions geosnap/visualize/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .descriptives import plot_violins_by_cluster
from .interactive import *
from .mapping import *
from .seq import indexplot_seq
from .transitions import *
from .mapping import *
from .descriptives import plot_violins_by_cluster
326 changes: 326 additions & 0 deletions geosnap/visualize/interactive.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,326 @@
from warnings import warn

import geopandas as gpd
import numpy as np
import pandas as pd
from mapclassify.util import get_color_array
from matplotlib import colormaps

__all__ = ["GeosnapAccessor"]


# not sure what this namespace should be. I usually alias
# the visualize module as gvz
@pd.api.extensions.register_dataframe_accessor("gvz")
class GeosnapAccessor:
def __init__(self, pandas_obj):
self._validate(pandas_obj)
self._obj = pandas_obj

@staticmethod
def _validate(obj):
if not isinstance(obj, gpd.GeoDataFrame):
raise AttributeError("must be a geodataframe")

def explore(
self,
column=None,
cmap=None,
scheme=None,
k=6,
categorical=False,
elevation=None,
extruded=False,
elevation_scale=1,
alpha=1,
layer_kwargs=None,
map_kwargs=None,
classify_kwargs=None,
nan_color=[255, 255, 255, 255],
color=None,
wireframe=False,
tiles="CartoDB Darkmatter",
m=None,
):
"""explore a dataframe using lonboard and deckgl

Parameters
----------
gdf : geopandas.GeoDataFrame
dataframe to visualize
column : str, optional
name of column on dataframe to visualize on map, by default None
cmap : str, optional
name of matplotlib colormap to use, by default None
scheme : str, optional
name of a classification scheme defined by mapclassify.Classifier, by default
None
k : int, optional
number of classes to generate, by default 6
categorical : bool, optional
whether the data should be treated as categorical or continuous, by default
False
elevation : str or array, optional
name of column on the dataframe used to extrude each geometry or an array-like
in the same order as observations, by default None
extruded : bool, optional
whether to extrude geometries using the z-dimension, by default False
elevation_scale : float, optional
constant scaler multiplied by elevation valuer, by default 1
alpha : float, optional
alpha (opacity) parameter in the range (0,1) passed to
mapclassify.util.get_color_array, by default 1
layer_kwargs : dict, optional
additional keyword arguments passed to lonboard.viz layer arguments (either
polygon_kwargs, scatterplot_kwargs, or path_kwargs, depending on input
geometry type), by default None
map_kwargs : dict, optional
additional keyword arguments passed to lonboard.viz map_kwargs, by default
None
classify_kwargs : dict, optional
additional keyword arguments passed to `mapclassify.classify`, by default
None
nan_color : list-like, optional
color used to shade NaN observations formatted as an RGBA list, by
default [255, 255, 255, 255]. If no alpha channel is passed it is assumed to
be 255.
color : str or array-like, optional
single or array of colors passed to `lonboard.Layer` object (get_color if
input dataframe is linestring, or get_fill_color otherwise. By default None
wireframe : bool, optional
whether to use wireframe styling in deckgl, by default False
tiles : str or lonboard.basemap
either a known string {"CartoDB Positron", "CartoDB Positron No Label",
"CartoDB Darkmatter", "CartoDB Darkmatter No Label", "CartoDB Voyager",
"CartoDB Voyager No Label"} or a lonboard.basemap object, or a string to a
maplibre style basemap.

Returns
-------
lonboard.Map
a lonboard map with geodataframe included as a Layer object.
"""
return _dexplore(
self._obj,
column,
cmap,
scheme,
k,
categorical,
elevation,
extruded,
elevation_scale,
alpha,
layer_kwargs,
map_kwargs,
classify_kwargs,
nan_color,
color,
wireframe,
tiles,
m,
)


def _dexplore(
gdf,
column=None,
cmap=None,
scheme=None,
k=6,
categorical=False,
elevation=None,
extruded=False,
elevation_scale=1,
alpha=1,
layer_kwargs=None,
map_kwargs=None,
classify_kwargs=None,
nan_color=[255, 255, 255, 255],
color=None,
wireframe=False,
tiles="CartoDB Darkmatter",
m=None,
):
"""explore a dataframe using lonboard and deckgl

Parameters
----------
gdf : geopandas.GeoDataFrame
dataframe to visualize
column : str, optional
name of column on dataframe to visualize on map, by default None
cmap : str, optional
name of matplotlib colormap to , by default None
scheme : str, optional
name of a classification scheme defined by mapclassify.Classifier, by default
None
k : int, optional
number of classes to generate, by default 6
categorical : bool, optional
whether the data should be treated as categorical or continuous, by default
False
elevation : str or array, optional
name of column on the dataframe used to extrude each geometry or an array-like
in the same order as observations, by default None
extruded : bool, optional
whether to extrude geometries using the z-dimension, by default False
elevation_scale : int, optional
constant scaler multiplied by elevation valuer, by default 1
alpha : float, optional
alpha (opacity) parameter in the range (0,1) passed to
mapclassify.util.get_color_array, by default 1
layer_kwargs : dict, optional
additional keyword arguments passed to lonboard.viz layer arguments (either
polygon_kwargs, scatterplot_kwargs, or path_kwargs, depending on input
geometry type), by default None
map_kwargs : dict, optional
additional keyword arguments passed to lonboard.viz map_kwargs, by default None
classify_kwargs : dict, optional
additional keyword arguments passed to `mapclassify.classify`, by default None
nan_color : list-like, optional
color used to shade NaN observations formatted as an RGBA list, by
default [255, 255, 255, 255]. If no alpha channel is passed it is assumed to be
255.
color : str or array-like, optional
_description_, by default None
wireframe : bool, optional
whether to use wireframe styling in deckgl, by default False
m : lonboard.Map
a lonboard.Map instance to render the new layer on. If None (default), a new Map
will be generated.

Returns
-------
lonboard.Map
a lonboard map with geodataframe included as a Layer object.

"""
try:
from lonboard import Map, basemap, viz
from lonboard.colormap import apply_continuous_cmap
except ImportError as e:
raise ImportError(
"you must have the lonboard package installed to use this function"
) from e
providers = {
"CartoDB Positron": basemap.CartoBasemap.Positron,
"CartoDB Positron No Label": basemap.CartoBasemap.PositronNoLabels,
"CartoDB Darkmatter": basemap.CartoBasemap.DarkMatter,
"CartoDB Darkmatter No Label": basemap.CartoBasemap.DarkMatterNoLabels,
"CartoDB Voyager": basemap.CartoBasemap.Voyager,
"CartoDB Voyager No Label": basemap.CartoBasemap.VoyagerNoLabels,
}

if map_kwargs is None:
map_kwargs = dict()
if classify_kwargs is None:
classify_kwargs = dict()
if layer_kwargs is None:
layer_kwargs = dict()
if isinstance(elevation, str):
if elevation in gdf.columns:
elevation = gdf[elevation]
else:
raise ValueError(
f"the designated height column {elevation} is not in the dataframe"
)
if not pd.api.types.is_numeric_dtype(elevation):
raise ValueError("elevation must be a numeric data type")

if not pd.api.types.is_list_like(nan_color):
raise ValueError("nan_color must be an iterable of 3 or 4 values")

if len(nan_color) != 4:
if len(nan_color) == 3:
nan_color = np.append(nan_color, [255])
else:
raise ValueError("nan_color must be an iterable of 3 or 4 values")

# only polygons have z
if ["Polygon", "MultiPolygon"] in gdf.geometry.geom_type.unique():
layer_kwargs["get_elevation"] = elevation
layer_kwargs["extruded"] = extruded
layer_kwargs["elevation_scale"] = elevation_scale
layer_kwargs["wireframe"] = wireframe

LINE = False # set color of lines, not fill_color
if ["LineString", "MultiLineString"] in gdf.geometry.geom_type.unique():
LINE = True
if color:
if LINE:
layer_kwargs["get_color"] = color
else:
layer_kwargs["get_fill_color"] = color
if column is not None:
if column not in gdf.columns:
raise ValueError(f"the designated column {column} is not in the dataframe")
if gdf[column].dtype in ["O", "category"]:
categorical = True
if cmap is not None and cmap not in colormaps:
raise ValueError(
f"`cmap` must be one of {list(colormaps.keys())} but {cmap} was passed"
)
if cmap is None:
cmap = "tab20" if categorical else "viridis"
if categorical:
color_array = _get_categorical_cmap(gdf[column], cmap, nan_color, alpha)
elif scheme is None:
# minmax scale the column first, matplotlib needs 0-1
transformed = (gdf[column] - np.nanmin(gdf[column])) / (
np.nanmax(gdf[column]) - np.nanmin(gdf[column])
)
color_array = apply_continuous_cmap(
values=transformed, cmap=colormaps[cmap], alpha=alpha
)
else:
color_array = get_color_array(
gdf[column],
scheme=scheme,
k=k,
cmap=cmap,
alpha=alpha,
nan_color=nan_color,
**classify_kwargs,
)

if LINE:
layer_kwargs["get_color"] = color_array

else:
layer_kwargs["get_fill_color"] = color_array
if tiles:
map_kwargs["basemap_style"] = providers[tiles]
new_m = viz(
gdf,
polygon_kwargs=layer_kwargs,
scatterplot_kwargs=layer_kwargs,
path_kwargs=layer_kwargs,
map_kwargs=map_kwargs,
)
if m is not None:
new_m = m.add_layer(new_m)

return new_m


def _get_categorical_cmap(categories, cmap, nan_color, alpha):
try:
from lonboard.colormap import apply_categorical_cmap
except ImportError as e:
raise ImportError(
"this function requres the lonboard package to be installed"
) from e

cat_codes = pd.Series(pd.Categorical(categories).codes, dtype="category")
# nans are encoded as -1 OR largest category depending on input type
# re-encode to always be last category
cat_codes = cat_codes.cat.rename_categories({-1: len(cat_codes.unique()) - 1})
unique_cats = categories.dropna().unique()
n_cats = len(unique_cats)
colors = colormaps[cmap].resampled(n_cats)(list(range(n_cats)), alpha)
colors = (np.array(colors) * 255).astype(int)
colors = np.vstack([colors, nan_color])
temp_cmap = dict(zip(range(n_cats + 1), colors))
fill_color = apply_categorical_cmap(cat_codes, temp_cmap)
return fill_color
8 changes: 2 additions & 6 deletions geosnap/visualize/mapping.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""functions for choropleth mapping timeseries data."""

import os
import re
import tempfile
Expand All @@ -16,11 +17,7 @@
schemes[classifier.lower()] = getattr(classifiers, classifier)


__all__ = [
"animate_timeseries",
"gif_from_path",
"plot_timeseries",
]
__all__ = ["animate_timeseries", "gif_from_path", "plot_timeseries"]


def gif_from_path(
Expand Down Expand Up @@ -378,7 +375,6 @@ def animate_timeseries(
colors = temp[color_col] if color_col is not None else None

if categorical:

temp.plot(
column,
categorical=True,
Expand Down
Loading