Skip to content

This project explores metaheuristic algorithms for feature weight learning in 1NN classification.

Notifications You must be signed in to change notification settings

pab1s/feature-weight-metaheuristics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Metaheuristics Weight Finding Project

Overview

This project implements and evaluates various metaheuristic algorithms for weight finding in machine learning models, particularly for the Feature Weight Learning (FWL) problem. It includes a range of algorithms from simple local search methods to more complex population-based approaches, designed to optimize feature selection and weight assignment in classification tasks. The project uses 5-fold cross-validation (5CV) for analysis and comparison, focusing on weight generation for the 1-Nearest Neighbor (1NN) classification algorithm.

NOTE: The report is written in Spanish.

Project Structure

.
├── bin/                  # Compiled binaries (contains metaheuristics executable)
├── data/                 # ARFF data files and FWL tables for 2023-24
├── docs/                 # Documentation
│   ├── html/             # Doxygen-generated HTML docs
│   └── latex/            # Doxygen-generated LaTeX docs
├── include/              # Header files
│   ├── algorithms/       # Algorithm-specific headers
│   └── utils/            # Utility headers
├── obj/                  # Compiled object files
├── outputs/              # Execution results, generated solutions, and training fitness logs
├── scripts/              # Utility scripts (including run.sh and generate_training_fitness_table.py)
├── src/                  # Source files
│   ├── algorithms/       # Algorithm implementations
│   └── utils/            # Utility implementations
├── tests/                # Unit tests and mocks
└── Makefile              # Project compilation instructions

Datasets

The project evaluates the algorithms using three datasets:

  • breast-cancer
  • ecoli
  • parkinsons

Algorithms Implemented

Local Search Methods

  1. Local Search
  2. Best Local Search (BLS)
  3. Simulated Annealing (SA)
  4. Iterated Local Search (ILS)
  5. ILS with SA (ILS-SA)

Population-based Methods

  1. Genetic Algorithm (GA)
    • AGE-CA: Steady-state GA with arithmetic crossover
    • AGE-BLX: Steady-state GA with BLX-α crossover
    • AGG-CA: Generational GA with arithmetic crossover
    • AGG-BLX: Generational GA with BLX-α crossover
  2. Memetic Algorithm (MA)
  3. MA with Restart
  4. BMB (Baldwinian MA)

Other Methods

  1. 1-Nearest Neighbor (1NN)
  2. Relief
  3. Random Search

Installation

  1. Clone the repository:
    git clone https://github.com/pab1s/attribute-weight-metaheuristics.git
    cd mattribute-weight-metaheuristics
    
  2. Compile the project:
    make
    

Usage

Run the compiled binary with appropriate arguments:

./scripts/run.sh [options]

Execution Parameters

The program accepts the following parameters:

  • --algorithm=ALGORITHM_NAME: Specifies the algorithm to run (e.g., local-search, age-ca, memetic)
  • --dataset=DATASET_NAME: Specifies the dataset to use (breast-cancer, ecoli, or parkinsons)
  • --seed=SEED_VALUE: Sets the random seed
  • --log: Enables logging of execution results

Additional algorithm-specific parameters can be specified. For example:

  • Local Search:

    • --maxEvaluations: Maximum number of evaluations (default: 15000)
    • --maxNeighbors: Maximum number of neighbors to explore per iteration (default: 20)
    • --variance: Variance for the normal distribution in neighbor generation (default: 0.3)
  • Genetic Algorithms:

    • --maxEvaluations: Maximum number of objective function evaluations (default: 15000)
    • --populationSize: Population size (default: 50)
    • --crossoverRate: Crossover probability (default: 1.0)
    • --mutationRate: Mutation probability (default: 0.08)

For specific usage instructions and parameters for each algorithm, please refer to the documentation in the docs/ directory.

Scripts

The scripts/ directory contains useful scripts:

  • run.sh: Main execution script
  • generate_training_fitness_table.py: Generates performance graphs

To run the main experiment script:

./scripts/run.sh

Documentation

This project uses Doxygen for documentation. To generate the documentation:

  1. Ensure you have Doxygen installed.
  2. Run:
    doxygen config.doxy
    
  3. Access the generated documentation in docs/html/index.html or docs/latex/refman.pdf.

Contact

Pablo Olivares Martínez - [email protected]

About

This project explores metaheuristic algorithms for feature weight learning in 1NN classification.

Topics

Resources

Stars

Watchers

Forks

Languages