Skip to content

panda7777777/GCN-UOD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GCN-UOD

The code for our paper "Generative Cooperative Network for Unsupervised Outlier Detection".

Environment Setup

Our project is implemented using the PyTorch framework. The following are the necessary dependencies:

  • python==3.11.5
  • pytorch==2.1.0
  • CUDA==12.1
  • numpy==1.26.0
  • pandas==2.1.1
  • matplotlib==3.8.0
  • scipy==1.11.3
  • sklearn==1.3.2

Usage

We provide 13 datasets in ./data, as referenced in our paper. Parameters for these datasets are detailed in parameters.txt. Below is an example illustrating the training process for our models (ACE & GCN-UOD) on the SpamBase dataset. By default, the results, including model weights, AUC scores, inference times, and training history, are stored in ./results.

  1. Train ACE to describle a preliminary boundary that separates significant outliers from normal data:

    python main.py --model ACE --data SpamBase --lr_E 1e-5 --epochs 600 --alpha 0.05
    
  2. Copy the weights of ACE to ./weights:

    cp path/to/weights ./weights/ACE_Spambase.pt
    
  3. Train GCN-UOD to describle a more resonable boundary:

    python main.py --model GCN-UOD --data SpamBase --lr_E 1e-4 --lr_G 1e-4 --epochs 500 --drop_one
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages