Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rework groupby and resample core modules #848

Merged
merged 23 commits into from
Feb 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion pandas-stubs/_libs/properties.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@ class CachedProperty:
def __get__(self, obj, typ): ...
def __set__(self, obj, value) -> None: ...

cache_readonly: CachedProperty = ...
# note: this is a lie to make type checkers happy (they special
# case property). cache_readonly uses attribute names similar to
# property (fget) but it does not provide fset and fdel.
cache_readonly = property

class AxisProperty:
def __init__(self, axis: int = ..., doc: str = ...) -> None: ...
Expand Down
20 changes: 20 additions & 0 deletions pandas-stubs/_typing.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,11 @@ from pandas.core.dtypes.dtypes import (

from pandas.io.formats.format import EngFormatter

# `Incomplete` is equivalent to `Any`. Use it to annotate symbols that you don't
# know the type of yet and that should be changed in the future. Use `Any` only
# where it is the only acceptable type.
Incomplete: TypeAlias = Any
hamdanal marked this conversation as resolved.
Show resolved Hide resolved

ArrayLike: TypeAlias = ExtensionArray | np.ndarray
AnyArrayLike: TypeAlias = Index | Series | np.ndarray
PythonScalar: TypeAlias = str | bool | complex
Expand Down Expand Up @@ -80,6 +85,10 @@ class FulldatetimeDict(YearMonthDayDict, total=False):
us: DatetimeDictArg
ns: DatetimeDictArg

CorrelationMethod: TypeAlias = (
Literal["pearson", "kendall", "spearman"]
| Callable[[np.ndarray, np.ndarray], float]
)
# dtypes
NpDtype: TypeAlias = str | np.dtype[np.generic] | type[str | complex | bool | object]
Dtype: TypeAlias = ExtensionDtype | NpDtype
Expand Down Expand Up @@ -444,6 +453,7 @@ class SequenceNotStr(Protocol[_T_co]):
IndexLabel: TypeAlias = Hashable | Sequence[Hashable]
Label: TypeAlias = Hashable | None
Level: TypeAlias = Hashable | int
Shape: TypeAlias = tuple[int, ...]
Suffixes: TypeAlias = tuple[str | None, str | None]
Ordered: TypeAlias = bool | None
JSONSerializable: TypeAlias = PythonScalar | list | dict
Expand All @@ -469,8 +479,11 @@ AggFuncTypeSeriesToFrame: TypeAlias = list[AggFuncTypeBase] | AggFuncTypeDictSer
AggFuncTypeFrame: TypeAlias = (
AggFuncTypeBase | list[AggFuncTypeBase] | AggFuncTypeDictFrame
)
AggFuncTypeDict: TypeAlias = AggFuncTypeDictSeries | AggFuncTypeDictFrame
AggFuncType: TypeAlias = AggFuncTypeBase | list[AggFuncTypeBase] | AggFuncTypeDict

num: TypeAlias = complex
AxisInt: TypeAlias = int
AxisIndex: TypeAlias = Literal["index", 0]
AxisColumn: TypeAlias = Literal["columns", 1]
Axis: TypeAlias = AxisIndex | AxisColumn
Expand Down Expand Up @@ -563,6 +576,9 @@ IndexT = TypeVar("IndexT", bound=Index)
IntervalT = TypeVar("IntervalT", bound=Interval)
IntervalClosedType: TypeAlias = Literal["left", "right", "both", "neither"]

ScalarIndexer: TypeAlias = int | np.integer
SequenceIndexer: TypeAlias = slice | list[int] | np.ndarray
PositionalIndexer: TypeAlias = ScalarIndexer | SequenceIndexer
TakeIndexer: TypeAlias = Sequence[int] | Sequence[np.integer] | npt.NDArray[np.integer]

IgnoreRaiseCoerce: TypeAlias = Literal["ignore", "raise", "coerce"]
Expand Down Expand Up @@ -758,5 +774,9 @@ RandomState: TypeAlias = (
| np.random.BitGenerator
| np.random.RandomState
)
Frequency: TypeAlias = str | BaseOffset
TimeGrouperOrigin: TypeAlias = (
Timestamp | Literal["epoch", "start", "start_day", "end", "end_day"]
)

__all__ = ["npt", "type_t"]
15 changes: 13 additions & 2 deletions pandas-stubs/core/base.pyi
Original file line number Diff line number Diff line change
@@ -1,7 +1,12 @@
from collections.abc import Iterator
from collections.abc import (
Hashable,
Iterator,
)
from typing import (
Any,
Generic,
Literal,
final,
)

import numpy as np
Expand All @@ -19,13 +24,19 @@ from pandas._typing import (
Scalar,
npt,
)
from pandas.util._decorators import cache_readonly

class NoNewAttributesMixin:
def __setattr__(self, key, value) -> None: ...
def __setattr__(self, key: str, value: Any) -> None: ...

class SelectionMixin(Generic[NDFrameT]):
obj: NDFrameT
exclusions: frozenset[Hashable]
@final
@cache_readonly
def ndim(self) -> int: ...
Dr-Irv marked this conversation as resolved.
Show resolved Hide resolved
def __getitem__(self, key): ...
def aggregate(self, func, *args, **kwargs): ...

class IndexOpsMixin(OpsMixin, Generic[S1]):
__array_priority__: int = ...
Expand Down
57 changes: 17 additions & 40 deletions pandas-stubs/core/frame.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ from pandas.core.indexing import (
_LocIndexer,
)
from pandas.core.interchange.dataframe_protocol import DataFrame as DataFrameXchg
from pandas.core.resample import Resampler
from pandas.core.series import Series
from pandas.core.window import (
Expanding,
Expand All @@ -54,6 +53,7 @@ from pandas.core.window.rolling import (
from typing_extensions import Self
import xarray as xr

from pandas._libs.lib import NoDefault
from pandas._libs.missing import NAType
from pandas._libs.tslibs import BaseOffset
from pandas._libs.tslibs.nattype import NaTType
Expand Down Expand Up @@ -1006,104 +1006,96 @@ class DataFrame(NDFrame, OpsMixin):
def groupby(
self,
by: Scalar,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
Dr-Irv marked this conversation as resolved.
Show resolved Hide resolved
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[Scalar]: ...
@overload
def groupby(
self,
by: DatetimeIndex,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[Timestamp]: ...
@overload
def groupby(
self,
by: TimedeltaIndex,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[Timedelta]: ...
@overload
def groupby(
self,
by: PeriodIndex,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[Period]: ...
@overload
def groupby(
self,
by: IntervalIndex[IntervalT],
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[IntervalT]: ...
@overload
def groupby(
self,
by: MultiIndex | GroupByObjectNonScalar | None = ...,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[tuple]: ...
@overload
def groupby(
self,
by: Series[SeriesByT],
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[SeriesByT]: ...
@overload
def groupby(
self,
by: CategoricalIndex | Index | Series,
axis: AxisIndex = ...,
axis: AxisIndex | NoDefault = ...,
level: IndexLabel | None = ...,
as_index: _bool = ...,
sort: _bool = ...,
group_keys: _bool = ...,
squeeze: _bool = ...,
observed: _bool = ...,
observed: _bool | NoDefault = ...,
dropna: _bool = ...,
) -> DataFrameGroupBy[Any]: ...
def pivot(
Expand Down Expand Up @@ -1921,21 +1913,6 @@ class DataFrame(NDFrame, OpsMixin):
*,
inplace: Literal[False] = ...,
) -> DataFrame: ...
def resample(
self,
rule,
axis: Axis = ...,
closed: _str | None = ...,
label: _str | None = ...,
convention: TimestampConvention = ...,
kind: Literal["timestamp", "period"] | None = ...,
on: _str | None = ...,
level: Level | None = ...,
origin: Timestamp
| Literal["epoch", "start", "start_day", "end", "end_day"] = ...,
offset: dt.timedelta | Timedelta | _str | None = ...,
group_keys: _bool = ...,
) -> Resampler[DataFrame]: ...
def rfloordiv(
self,
other,
Expand Down
23 changes: 23 additions & 0 deletions pandas-stubs/core/generic.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ from collections.abc import (
Mapping,
Sequence,
)
import datetime as dt
import sqlite3
from typing import (
Any,
Expand All @@ -17,13 +18,15 @@ from typing import (
import numpy as np
from pandas import Index
import pandas.core.indexing as indexing
from pandas.core.resample import DatetimeIndexResampler
from pandas.core.series import Series
import sqlalchemy.engine
from typing_extensions import (
Concatenate,
Self,
)

from pandas._libs.lib import NoDefault
from pandas._typing import (
S1,
ArrayLike,
Expand All @@ -37,6 +40,7 @@ from pandas._typing import (
FilePath,
FileWriteMode,
FillnaOptions,
Frequency,
HashableT1,
HashableT2,
HDFCompLib,
Expand All @@ -48,6 +52,10 @@ from pandas._typing import (
SortKind,
StorageOptions,
T,
TimedeltaConvertibleTypes,
TimeGrouperOrigin,
TimestampConvention,
TimestampConvertibleTypes,
WriteBuffer,
)

Expand Down Expand Up @@ -432,6 +440,21 @@ class NDFrame(indexing.IndexingMixin):
end_time,
axis=...,
) -> Self: ...
@final
Dr-Irv marked this conversation as resolved.
Show resolved Hide resolved
def resample(
self,
rule: Frequency | dt.timedelta,
axis: Axis | NoDefault = ...,
closed: Literal["right", "left"] | None = ...,
label: Literal["right", "left"] | None = ...,
convention: TimestampConvention = ...,
kind: Literal["period", "timestamp"] | None = ...,
on: Level | None = ...,
level: Level | None = ...,
origin: TimeGrouperOrigin | TimestampConvertibleTypes = ...,
offset: TimedeltaConvertibleTypes | None = ...,
group_keys: _bool = ...,
) -> DatetimeIndexResampler[Self]: ...
def first(self, offset) -> Self: ...
def last(self, offset) -> Self: ...
def rank(
Expand Down
15 changes: 14 additions & 1 deletion pandas-stubs/core/groupby/__init__.pyi
Original file line number Diff line number Diff line change
@@ -1,2 +1,15 @@
from pandas.core.groupby.generic import NamedAgg as NamedAgg
from pandas.core.groupby.generic import (
DataFrameGroupBy as DataFrameGroupBy,
NamedAgg as NamedAgg,
SeriesGroupBy as SeriesGroupBy,
)
from pandas.core.groupby.groupby import GroupBy as GroupBy
from pandas.core.groupby.grouper import Grouper as Grouper

__all__ = [
"DataFrameGroupBy",
"NamedAgg",
"SeriesGroupBy",
"GroupBy",
"Grouper",
]
1 change: 0 additions & 1 deletion pandas-stubs/core/groupby/base.pyi
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
# from pandas.core.dtypes.common import is_list_like as is_list_like, is_scalar as is_scalar
from collections.abc import Hashable
import dataclasses

Expand Down
6 changes: 0 additions & 6 deletions pandas-stubs/core/groupby/categorical.pyi
Original file line number Diff line number Diff line change
@@ -1,6 +0,0 @@
from pandas.core.arrays.categorical import ( # , CategoricalDtype as CategoricalDtype
Categorical,
)

def recode_for_groupby(c: Categorical, sort: bool, observed: bool): ...
def recode_from_groupby(c: Categorical, sort: bool, ci): ...
Loading
Loading