Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[backport 2.3.x] ENH: Enable pytables to round-trip with StringDtype (#60663) #60771

Merged
merged 1 commit into from
Jan 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ Other enhancements
- The semantics for the ``copy`` keyword in ``__array__`` methods (i.e. called
when using ``np.array()`` or ``np.asarray()`` on pandas objects) has been
updated to raise FutureWarning with NumPy >= 2 (:issue:`60340`)
- :meth:`~Series.to_hdf` and :meth:`~DataFrame.to_hdf` now round-trip with ``StringDtype`` (:issue:`60663`)
- The :meth:`~Series.cumsum`, :meth:`~Series.cummin`, and :meth:`~Series.cummax` reductions are now implemented for ``StringDtype`` columns when backed by PyArrow (:issue:`60633`)
- The :meth:`~Series.sum` reduction is now implemented for ``StringDtype`` columns (:issue:`59853`)

Expand Down
36 changes: 30 additions & 6 deletions pandas/io/pytables.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,12 +86,16 @@
DatetimeArray,
PeriodArray,
)
from pandas.core.arrays.string_ import BaseStringArray
import pandas.core.common as com
from pandas.core.computation.pytables import (
PyTablesExpr,
maybe_expression,
)
from pandas.core.construction import extract_array
from pandas.core.construction import (
array as pd_array,
extract_array,
)
from pandas.core.indexes.api import ensure_index
from pandas.core.internals import (
ArrayManager,
Expand Down Expand Up @@ -2955,6 +2959,9 @@ def read_array(self, key: str, start: int | None = None, stop: int | None = None

if isinstance(node, tables.VLArray):
ret = node[0][start:stop]
dtype = getattr(attrs, "value_type", None)
if dtype is not None:
ret = pd_array(ret, dtype=dtype)
else:
dtype = _ensure_decoded(getattr(attrs, "value_type", None))
shape = getattr(attrs, "shape", None)
Expand Down Expand Up @@ -3193,6 +3200,11 @@ def write_array(
elif lib.is_np_dtype(value.dtype, "m"):
self._handle.create_array(self.group, key, value.view("i8"))
getattr(self.group, key)._v_attrs.value_type = "timedelta64"
elif isinstance(value, BaseStringArray):
vlarr = self._handle.create_vlarray(self.group, key, _tables().ObjectAtom())
vlarr.append(value.to_numpy())
node = getattr(self.group, key)
node._v_attrs.value_type = str(value.dtype)
elif empty_array:
self.write_array_empty(key, value)
else:
Expand Down Expand Up @@ -3225,7 +3237,11 @@ def read(
index = self.read_index("index", start=start, stop=stop)
values = self.read_array("values", start=start, stop=stop)
result = Series(values, index=index, name=self.name, copy=False)
if using_string_dtype() and is_string_array(values, skipna=True):
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(values, skipna=True)
):
result = result.astype(StringDtype(na_value=np.nan))
return result

Expand Down Expand Up @@ -3294,7 +3310,11 @@ def read(

columns = items[items.get_indexer(blk_items)]
df = DataFrame(values.T, columns=columns, index=axes[1], copy=False)
if using_string_dtype() and is_string_array(values, skipna=True):
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(values, skipna=True)
):
df = df.astype(StringDtype(na_value=np.nan))
dfs.append(df)

Expand Down Expand Up @@ -4682,9 +4702,13 @@ def read(
df = DataFrame._from_arrays([values], columns=cols_, index=index_)
if not (using_string_dtype() and values.dtype.kind == "O"):
assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)
if using_string_dtype() and is_string_array(
values, # type: ignore[arg-type]
skipna=True,
if (
using_string_dtype()
and isinstance(values, np.ndarray)
and is_string_array(
values,
skipna=True,
)
):
df = df.astype(StringDtype(na_value=np.nan))
frames.append(df)
Expand Down
70 changes: 56 additions & 14 deletions pandas/tests/io/pytables/test_put.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas._libs.tslibs import Timestamp

import pandas as pd
Expand All @@ -26,7 +24,6 @@

pytestmark = [
pytest.mark.single_cpu,
pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False),
]


Expand Down Expand Up @@ -54,8 +51,8 @@ def test_api_default_format(tmp_path, setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)]),
)

with pd.option_context("io.hdf.default_format", "fixed"):
Expand All @@ -79,8 +76,8 @@ def test_api_default_format(tmp_path, setup_path):
path = tmp_path / setup_path
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)]),
)

with pd.option_context("io.hdf.default_format", "fixed"):
Expand All @@ -106,7 +103,7 @@ def test_put(setup_path):
)
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=20, freq="B"),
)
store["a"] = ts
Expand Down Expand Up @@ -166,7 +163,7 @@ def test_put_compression(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)

Expand All @@ -183,7 +180,7 @@ def test_put_compression(setup_path):
def test_put_compression_blosc(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)

Expand All @@ -197,10 +194,20 @@ def test_put_compression_blosc(setup_path):
tm.assert_frame_equal(store["c"], df)


def test_put_mixed_type(setup_path):
def test_put_datetime_ser(setup_path):
# https://github.com/pandas-dev/pandas/pull/60663
ser = Series(3 * [Timestamp("20010102").as_unit("ns")])
with ensure_clean_store(setup_path) as store:
store.put("ser", ser)
expected = ser.copy()
result = store.get("ser")
tm.assert_series_equal(result, expected)


def test_put_mixed_type(setup_path, using_infer_string):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["obj1"] = "foo"
Expand All @@ -220,13 +227,42 @@ def test_put_mixed_type(setup_path):
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

with tm.assert_produces_warning(pd.errors.PerformanceWarning):
warning = None if using_infer_string else pd.errors.PerformanceWarning
with tm.assert_produces_warning(warning):
store.put("df", df)

expected = store.get("df")
tm.assert_frame_equal(expected, df)


def test_put_str_frame(setup_path, string_dtype_arguments):
# https://github.com/pandas-dev/pandas/pull/60663
dtype = pd.StringDtype(*string_dtype_arguments)
df = DataFrame({"a": pd.array(["x", pd.NA, "y"], dtype=dtype)})
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

store.put("df", df)
expected_dtype = "str" if dtype.na_value is np.nan else "string"
expected = df.astype(expected_dtype)
result = store.get("df")
tm.assert_frame_equal(result, expected)


def test_put_str_series(setup_path, string_dtype_arguments):
# https://github.com/pandas-dev/pandas/pull/60663
dtype = pd.StringDtype(*string_dtype_arguments)
ser = Series(["x", pd.NA, "y"], dtype=dtype)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")

store.put("ser", ser)
expected_dtype = "str" if dtype.na_value is np.nan else "string"
expected = ser.astype(expected_dtype)
result = store.get("ser")
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("format", ["table", "fixed"])
@pytest.mark.parametrize(
"index",
Expand All @@ -253,7 +289,7 @@ def test_store_index_types(setup_path, format, index):
tm.assert_frame_equal(df, store["df"])


def test_column_multiindex(setup_path):
def test_column_multiindex(setup_path, using_infer_string):
# GH 4710
# recreate multi-indexes properly

Expand All @@ -264,6 +300,12 @@ def test_column_multiindex(setup_path):
expected = df.set_axis(df.index.to_numpy())

with ensure_clean_store(setup_path) as store:
if using_infer_string:
# TODO(infer_string) make this work for string dtype
msg = "Saving a MultiIndex with an extension dtype is not supported."
with pytest.raises(NotImplementedError, match=msg):
store.put("df", df)
return
store.put("df", df)
tm.assert_frame_equal(
store["df"], expected, check_index_type=True, check_column_type=True
Expand Down
Loading